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Abstract

We construct untwisted Dijkgraaf-Witten theory as an example of a 2-dimensional topolog-
ical quantum field theory (TQFT) with gauge group a finite group G. We then use this TQFT
to give proof of Mednykh’s formula, which relates the number of homomorphisms from the
fundamental group of a surface Σ to G and the dimensions of the irreducible representations
of G.
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1 Construction of classical Dijkgraaf–Witten theory
Let G be a finite group and let M be a compact oriented manifold (possibly with boundary).
Dijkgraaf–Witten theory is a topological gauge theory with gauge group G. The fields of the
theory on M are principal G-bundles on M . Since G is finite, a principal G-bundle on M (with
flat connection) is precisely a groupoid homomorphism

Π1(M) −→ BG

from the fundamental groupoid of M to the groupoid BG with one object whose automorphism
group is G. Since G is finite, there is a unique flat connection on any principal G-bundle because
of the path lifting property. If P is a principal G bundle on M , then we send P to its holonomy
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functor
FP : Π1(M)→ BG

defined as follows. We choose trivializations Px
∼= G for each point x. Parallel transport along a

path γ : x → y gives a G-equivariant bijection τγ : Px → Py. In chosen coordinates Px
∼= G,

Py
∼= G, this map acts by left multiplication:

τγ(g) = F ([γ]) · g.

Now, if we change the identifications by left-multiplying each trivialization by some element
hx ∈ G, Px

∼= G via p 7→ h−1
x g, then the new parallel transport elements become:

F ′([γ]) = hyF ([γ])h−1
x .

Conversely, let F, F ′ : Π1(M) → BG be two functors. A natural transformation η : F ⇒ F ′

consists of the following data. For each object x ∈ M , a morphism ηx : F (x) → F ′(x) in BG.
But since both F (x) = F ′(x) = ∗, this means ηx ∈ G.

These must satisfy the naturality condition for every morphism [γ : x→ y] in Π1(M):

F ′([γ]) ◦ ηx = ηy ◦ F ([γ]).

In BG, composition of morphisms is multiplication in G, so this reads:

F ′([γ]) · ηx = ηy · F ([γ]) = ηyF ([γ])η−1
x .

Therefore the category of principal G-bundles on M is precisely the functor category

Π1(M) ⇒ BG,

and classical Dijkgraaf–Witten theory assigns this functor category to M . This category whose
morphisms are natural transformations between functors is itself a groupoid.

Example 1.1 (Connected M ). If M connected, there is an equivalent groupoid D with objects given
by group homomorphisms π1(M)→ G. The morphisms between group homomorphisms are given by
conjugation in G.

To see this, choose a basepoint x0 ∈ M . In the fundamental groupoid Π1(M), the endomorphisms of
x0 are precisely π1(M,x0). A functor F : Π1(M) → BG sends objects (points of M ) to the unique
object of BG, and sends each morphism (homotopy class of path) to an element of G = AutBG(∗).

In particular, the restriction ρF := F
∣∣
End(x0)

: π1(M,x0) −→ G is a group homomorphism, because F
preserves composition and inverses. So every object F determines a representation ρF : π1(M,x0)→ G.
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A morphism η : F ⇒ F ′ is a natural transformation, which is determined by the element ηx0 ∈ G. The
naturality square for η and any loop γ ∈ π1(M,x0) given by

F (x) F (x)

F ′(x) F ′(x)

F (γ)

ηx ηx

F ′(γ)

says that
ηx0 ρF (γ) = ρF ′(γ) ηx0

so ρF and ρF ′ differ by conjugation in G. Note that this conjugation can be thought of as changing the
basepoint x0 ∈M to another point x ∈M , because the conjugation is using the functoriality of F on a
path from x0 to x. There is another conjugation what one divides out by which is changing the anchor
point in the fiber of the principal G-bundle over x0.

Conversely, for each x ∈ M , choose once and for all a path cx : x0 → x with cx0 = id. (Any choice
will do; different choices produce naturally isomorphic functors.) Given a homotopy class [γ] : x→ y,
form the loop at x0 and define ℓ(γ) = [c−1

y · γ · cx] ∈ π1(M,x0). Set Fρ([γ]) := ρ
(
ℓ(γ)

)
∈ G. This

respects composition:

Fρ([γ2 ◦ γ1]) = ρ
(
[c−1

z γ2γ1cx]
)
= ρ
(
[c−1

z γ2cy]
)
ρ
(
[c−1

y γ1cx]
)
= Fρ([γ2])Fρ([γ1])

Suppose g : ρ → ρ′ in D, so ρ′(γ) = gρ(γ)g−1. Define a natural transformation η : Ψ(ρ) ⇒ Ψ(ρ′) by
setting ηx := g ∈ G for all x ∈M . Naturality is automatic because

ηy Ψ(ρ)(γ) = g ρ(ℓ(γ)) = ρ′(ℓ(γ)) g = Ψ(ρ′)(γ) ηx

So Fρ is indeed a functor Π1(M) → BG, and by construction Fρ

∣∣
π1(M,x0)

= ρ. This gives an equiva-
lence of groupoids D ≃ (Π1(M)⇒ BG).

Example 1.2. Let M = S1. A principal G-bundle on M (with flat connection) may then be identified
with a homomorphism Z→ G, hence with an element of G. In this case Π1(S

1)⇒ BG is the groupoid
G//G of elements of G up to conjugation. Specifically it is the groupoid whose objects are the elements
of G and where the morphisms g → h are given by elements a ∈ G such that aga−1 = h.

We describe the holonomy interpretation of this. Take the canonical generator γ of π1(S
1). Lift γ

starting at u in the fiber over x0. Because of the path lifting property, the lifted path γ̃ is unique and
ends at some u · g for a unique g ∈ G. Define this g as the holonomy element associated to γ and the
choice of u.

So with a fixed choice of u, we get a well-defined element g. But what if we had chosen a different
anchor u′ = u ·h in the fiber at x0? Lift γ starting at u′. You’ll end at u′ · g′ = (u ·h) · g′ = u · (hg′). On
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the other hand, uniqueness of lifts forces this endpoint to agree with the previous one: u · g. Therefore
hg′ = gh so the holonomy element depends on the choice of anchor up to conjugation.

Since we only consider compact manifolds M , the fundamental group of each connected compo-
nent of M is finitely generated, hence Π1(M)→ BG is an essentially finite groupoid (a groupoid
equivalent to a groupoid with finitely many morphisms).

Definition 1.3. The assignment M 7→ AG(M) defined by

M 7→ AG(M) := Π1(M)⇒ BG

is contravariant functor
AG : Man→ Gpd (1)

from the category of manifolds to the category of groupoids. It is known as the moduli stack of
principal G-bundles (or classical Dijkgraaf-Witten theory) on M .

Since we want to build a TQFT, we would like to extend AG to cobordisms. This is done as fol-
lows. If M is an n-dimensional compact oriented manifold with boundary X ⊔ Y (so a cobordism
X → Y ), then M,X, Y together define a cospan

M

X Y

(2)

of manifolds. Applying Π1(−) gives a cospan

Π1(X) Π1(Y )

Π1(M)

(3)

of groupoids, and applying (−)⇒ BG gives a span

AG(M)

AG(X) AG(Y )

(4)

of groupoids.

There is a category Span(FinGpd) whose objects are essentially finite groupoids and whose
morphisms are (isomorphism classes of) spans of essentially finite groupoids, where composition
of spans is given by taking pullbacks as follows:
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Y1 ×X2 Y2

Y1 Y2

X1 X2 X3

p1 p2

f1 g1 f2 g2

(5)

The assignment M 7→ AG(M) then extends, by the groupoid Seifert-van Kampen theorem, to a
(symmetric monoidal) functor

AG : nCob→ Span(FinGpd) (6)

which we might call classical (untwisted) Dijkgraaf-Witten theory.

One has to check that the assignment is functorial and symmetric monoidal. The justification
is that if M1 : X → Y and M2 : Y → Z glue along Y to M2 ◦ M1, then for inclusions
X ↪→ M1 ←↩ Y and Y ↪→ M2 ←↩ Z the groupoid Seifert–van Kampen theorem gives a pushout:
Π1(M2 ◦M1) ≃ Π1(M1) ⨿Π1(Y ) Π1(M2). Applying Fun(−, BG) (which is contravariant) turns
that pushout into a pullback: AG(M2 ◦M1) ≃ AG(M1) ×AG(Y ) AG(M2). But composition in
Span(FinGpd) is pullback of the middle objects. Hence the span for the glued cobordism equals
the pullback of spans—so the assignment is functorial.

To check that the functor is symmetric monoidal, note that Π1 sends disjoint unions to coproducts

Π1(X ⊔X ′) ∼= Π1(X)⨿ Π1(X
′)

Functors into BG turn coproducts into products:

Fun(Π1(X)⨿ Π1(X
′), BG) ∼= Fun(Π1(X), BG)× Fun(Π1(X

′), BG)

Hence AG(X ⊔ X ′) ∼= AG(X) × AG(X
′) and similarly for cobordisms (spans tensor by taking

products). The unit ∅ maps to the terminal groupoid 1 = Fun(∅, BG). The symmetry (swap of
components) is preserved, so the functor is symmetric monoidal.

2 Linearization and quantization
Quantum (untwisted) Dijkgraaf–Witten theory ZG is obtained from the classical theory AG by
applying a linearization functor

C(−) : Span(FinGpd)→ FinVect.
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In a quantum field theory, the partition function on a manifold M is heuristically written as

Z(M) =

∫
fields on M

eiS(field)D(field)

The fields are the configurations of the theory (here, principal G-bundles on M with connection,
if we were in Chern-Simons). S is the action functional and D(field) is the (heuristic) "measure"
on the space of fields. In the topological case (finite gauge group, no action term), this integral
reduces to "summing over all gauge fields," i.e. over all principal G-bundles.

Definition 2.1. The groupoid cardinality of an essentially finite groupoid X is defined as

|X| :=
∑

[x]∈π0(X)

1

|Aut(x)|

Remark 2.2. Naively we might try

Z(M)
?
= #{principal G-bundles on M}

But that’s not quite right. To get a correct measure we shouldn’t just count isomorphism classes, but
rather weight each object by 1/|Aut(P )|. For example, if G acts on a set X , the groupoid cardinality of
the action groupoid X // G is

#(X // G) =
∑

[x]∈X/G

1

|StabG(x)|
=
|X|
|G|

.

If X is an essentially finite groupoid, let CX denote the space of complex-valued functions on the
objects of X such that if there exists a morphism p : x→ y in X , then f(x) = f(y). Equivalently,
CX denotes the space of complex-valued functions on the isomorphism classes π0(X) of objects
of X . A functor F : X → Y induces two linear maps between these spaces of functions. We have
the pullback

F ∗ : CY → CX

given by
(F ∗(f))(x) := f(F (x)).

We also have the pushforward
F∗ : CX → CY

given by

(F∗(f))(y) =
∑

x∈π0(X):F (x)∼=y

|Aut(y)|
|Aut(x)|

f(x)
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The pushforward is adjoint to the pullback in the following sense. CX admits a distinguished linear
functional ∫

X

: CX ∋ f 7−→
∑

x∈π0(X)

f(x)

|Aut(x)|
∈ C,

which should be thought of as integration over X . The vector space CX is also a commutative
algebra under pointwise multiplication, and the integral of the identity recovers the groupoid car-
dinality of X . These two structures combine to give an inner product

⟨f, g⟩X =

∫
X

f(x)g(x) dx =
∑

x∈π0(X)

f(x)g(x)

|Aut(x)|

on CX , and the pushforward is adjoint to the pullback with respect to this inner product. It should
be thought of as integration along fibers.

Proposition 2.3. The pushforward and pullback satisfy the adjointness property.

Proof. We need to check that if f ∈ CX and g ∈ CY , and F : X → Y is a functor between
essentially finite groupoids, then

⟨F ∗g, f⟩X = ⟨g, F∗f⟩Y

Expanding the left hand side gives:

⟨F ∗g, f⟩X =
∑

[x]∈π0(X)

(F ∗g)(x) f(x)

|Aut(x)|
=
∑
[x]

g(F (x)) f(x)

|Aut(x)|
.

Expanding the right hand side gives:

⟨g, F∗f⟩Y =
∑

[y]∈π0(Y )

g(y) (F∗f)(y)

|Aut(y)|

=
∑
[y]

g(y)

|Aut(y)|

 ∑
[x]:F (x)∼=y

|Aut(y)|
|Aut(x)|

f(x)


=
∑
[y]

∑
[x]:F (x)∼=y

g(y) f(x)

|Aut(x)|

which is the same as the left hand side after reindexing the sum over [x].

Definition 2.4. The linearization functor C(−) : Span(FinGpd) → FinVect is defined on objects
by

X 7→ CX
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and on morphisms by
Z

X Y

p q

is sent to the linear map
q∗ ◦ p∗ : CX → CY .

which explicitly takes the form(
(q∗ ◦ p∗)(f)

)
(y) =

∑
z∈π0(Z) : q(z)∼=y

|Aut(y)|
|Aut(z)|

f(p(z)).

Definition 2.5. We define untwisted Dijkgraaf-Witten theory as the composition of the linearization
functor with the classical theory:

ZG = CAG : nCob→ FinVect.

Proposition 2.6. For a finite group G and a compact oriented n-manifold Σ, ZG(Σ) : C → C is given
by multiplication by the groupoid cardinality of BunG(Σ):

ZG(Σ) = |BunG(Σ) | =
∑

[P ]∈π0 BunG(Σ)

1

|Aut(P )|

If Σ is connected, this number is equal to

|Hom(π1Σ, G)|/|G|

Proof. For a closed oriented n-manifold Σ, both boundaries are empty, so the bordism functorial
assignment is just

BunG(∅)
s←− BunG(Σ)

t−→ BunG(∅).

But BunG(∅) ∼= ∗, a one-point groupoid with |Aut(∗)| = 1. So our span is simply

∗ s←−− BunG(Σ)
t−−→ ∗.

where both maps are the unique functor to the one-point groupoid. Now apply the push-pull
formula to our situation. Let 1 ∈ C∗ be the constant function with value 1. Then

((q∗ ◦ p∗)(1))(y) =
∑

z∈π0(BunG(Σ)): q(z)≃y

|Aut(y)|
|Aut(z)|

1.
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Since q(z) ≃ y is automatic (there is only one isomorphism class in ∗), and |Aut(y)| = 1, this
reduces to multiplication by ∑

[P ]∈π0 BunG(Σ)

1

|Aut(P )|

which is exactly the groupoid cardinality of BunG(Σ).

Fix a basepoint on Σ. Isomorphism classes of principal G-bundles with flat connection are in
bijection with conjugacy classes of homomorphisms ρ : π1(Σ)→ G. Moreover, the automorphism
group of the bundle corresponds to the centralizer of the image:

Aut(Pρ) ∼= CG(ρ) := {g ∈ G : gρ(γ)g−1 = ρ(γ) ∀γ}.

Hence
ZG(Σ) =

∑
[ρ]

1

|CG(ρ)|
.

Now view this as the groupoid cardinality of the action groupoid [Hom(π1Σ, G)/G], where G acts
by conjugation. By the orbit-stabilizer identity (or Burnside counting), for any finite G-set X one
has ∑

[x]∈X/G

1

| Stab(x)|
=
|X|
|G|

.

Apply this to X = Hom(π1Σ, G) to obtain∑
[ρ]

1

|CG(ρ)|
=
|Hom(π1Σ, G)|

|G|
.

This is exactly the claimed formula.

3 TQFT and Mednykh’s formula
We now restrict our attention to the case n = 2. In particular, we consider untwisted Dijkgraaf-
Witten theory as a 2-dimensional TQFT.

Definition 3.1. A 2-dimensional topological quantum field theory is a symmetric monoidal functor

Z : 2Cob → Vect

where 2Cob is the category whose

• Objects of 2Cob: finite disjoint unions of circles.

• Morphisms: oriented compact surfaces with boundary, viewed as cobordisms between col-
lections of circles.
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Explicitly, we have the following data. Under such a functor

• Z(S1) = A, a vector space.

• pair of pants (2 in, 1 out): multiplication m : A⊗ A→ A,

• pair of pants (1 in, 2 out): comultiplication ∆ : A→ A⊗ A,

• cap (no in, 1 out): unit η : C→ A,

• cup (1 in, no out): counit λ : A→ C.

This structure is exactly a commutative Frobenius algebra. This linear functional λ is the trace map
of the Frobenius algebra. The nondegeneracy condition on the Frobenius pairing (a, b) 7→ λ(ab)
comes precisely from gluing two cups with a pair of pants (geometrically giving a sphere).

In this case 2-dimensional TQFTs have a known classification as follows. If Z is such a TQFT,
then Z(S1) is a commutative Frobenius algebra (an algebra A equipped with a linear functional
λ such that the bilinear form λ(ab) is nondegenerate), and conversely given any commutative
Frobenius algebra A there is a unique (up to equivalence) TQFT such that Z(S1) ∼= A. The
structure maps of A and the axioms they satisfy come from a description of 2Cob in terms of
generators and relations; for example, the multiplication in A comes from the pair of pants and the
linear functional comes from the cup.

The commutative Frobenius algebra associated to untwisted Dijkgraaf-Witten theory can be ex-
plicitly described. We saw above that AG(S

1) is the groupoid of elements of G up to conjugation.
It follows that ZG(S

1) can be identified with the space of class functions on G.

Example 3.2 (Cap). The linear functional on ZG(S
1) is induced by the cap

D2

S1 ∅

which, after applying the classical functor AG(−), gives the span of groupoids

BG

G // G 1

where G//G, as above, denotes the groupoid of elements of G up to conjugation; BG, as above, denotes
the groupoid with one object and automorphism group G; and 1 denotes the trivial groupoid. The map
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BG→ G // G is the inclusion of the identity into G // G. Linearizing, we obtain the linear functional

ZG(S
1) ∋ f 7−→ f(1)

|G|
∈ ZG(∅) ∼= C,

where 1 denotes the identity element of G. In particular, the formula

f 7→ f(1)

|G|

comes from

1. Pullback along BG→ G // G: evaluate f at the identity.

2. Pushforward along BG→ 1: weight by 1
|G| (the groupoid cardinality of BG).

Example 3.3 (Pair of pants). The multiplication on ZG(S
1) is induced by the pair of pants, which,

after applying the classical functor AG(−), gives the span of groupoids (note that the pair of pants is
homeomorphic to a sphere with three holes has fundamental group the free group on two generators)

G×G // G

X = G // G×G // G G // G = Y

s t

where G acts on G × G by simultaneous conjugation: a · (g, h) = (aga−1, aha−1), and s is restriction
to the two incoming boundaries and t is restriction to the outgoing boundary. Explicitly,

s([(g, h)]) = ([g], [h])

t([(g, h)]) = [gh]

Linearization sends a span to a linear map by pull–push:

m = t∗ ◦ s∗ : C[X ] −→ C[Y ].

Identify C[G // G] with class functions on G. Write elements of C[X ] ∼= ClassFns(G)⊗ ClassFns(G)
as f1 ⊗ f2. The convolution product on the quotient stack [G/G] (the groupoid of G acting on itself by
conjugation) is given by

(f1 ⋆ f2)(g) =
∑

[(h1,h2)] :h1h2∼g

|Aut(g)|
|Aut(h1, h2)|

f1(h1)f2(h2)

where AAut(g) = CG(g) and Aut(h1, h2) = CG(h1)∩CG(h2). We show that this reduces to the usual
convolution on the space of class functions on G:

(f1 ∗ f2)(g) =
∑

h1h2=g

f1(h1)f2(h2)
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when the automorphism factors are expanded. Consider the multiplication map

m : G×G −→ G, m(h1, h2) = h1h2.

For fixed g ∈ G, the fiber
m−1(g) = {(h1, h2) ∈ G×G : h1h2 = g}

is acted on by the centralizer CG(g) via simultaneous conjugation:

a · (h1, h2) = (ah1a
−1, ah2a

−1), a ∈ CG(g).

This action preserves the fiber since ah1h2a
−1 = aga−1 = g. The stabilizer of (h1, h2) under this action

is
StabCG(g)(h1, h2) = CG(h1) ∩ CG(h2) = Aut(h1, h2).

Hence each orbit has cardinality
|CG(g)|
|CG(h1, h2)|

=
|Aut(g)|
|Aut(h1, h2)|

.

Since f1, f2 are class functions, they are constant on conjugacy classes, so∑
h1h2=g

f1(h1)f2(h2) =
∑

orbits [(h1,h2)]⊂m−1(g)

|Aut(g)|
|Aut(h1, h2)|

f1(h1)f2(h2).

Let Z : 2Cob→ FinVect be a 2 -dimensional semisimple oriented TQFT. Then E = Z(S1) is a
finite-dimensional commutative semisimple Frobenius algebra over C with Frobenius form

λ : Z(S1)→ C

Semisimple implies there are primitive orthogonal idempotents di with

didj = δijdi,
∑
i

di = 1,

and the Frobenius form is diagonal in this basis:

⟨di, dj⟩ = 0 (i ̸= j), ⟨di, di⟩ =: λ2
i ̸= 0.

As an algebra it is a finite product of copies of C. Z(S1) is determined up to isomorphism as a com-
mutative Frobenius algebra by the values λ(e1), . . . , λ(en), which are necessarily all nonzero (this
is necessary and sufficient for λ(ab) to be nondegenerate). In particular, these values determine
Z(Σ) for all closed connected orientable surfaces Σ.

The comultiplication ∆ : E → E ⊗ E is adjoint to µ:

⟨µ(x⊗ y), z⟩ = ⟨x⊗ y,∆z⟩.
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Applying this with x = y = z = di, and using that d2i = di and the basis is orthogonal, we get

∆(di) = λ−2
i di ⊗ di.

The handle element is ω := µ ◦ ∆(1) ∈ E. The comultiplication ∆ : E → E ⊗ E corresponds
to a surface with one input and two outputs. The multiplication µ : E ⊗ E → E corresponds to a
surface with two inputs and one output.

If we compose them,
E

∆−−→ E ⊗ E
µ−→ E,

we get the algebraic map corresponding to a surface with one input and one output. Composing
with the counit λ : E → C (a "cap") gives a surface with one handle and the output capped off (a
"closed handle").

For a closed genus-g surface, the same handle argument shows that

Z(Σg) = λ(ωg−1).

We start with a sphere with one output (gives the unit), then glue on g − 1 handles — each handle
corresponds to multiplying by ω — and finally cap off (apply the counit λ).

Because 1 =
∑

i di, we get

ω = µ

(∑
i

λ−2
i di ⊗ di

)
=
∑
i

λ−2
i di.

As the di are orthogonal idempotents

ω g−1 =
∑
i

λ
−2(g−1)
i di

But ε(di) = ⟨di, 1⟩ = ⟨di, di⟩ = λ2
i . Hence

Z(Σg) =
∑
i

λ2
i · λ

−2(g−1)
i =

∑
i

(λ2
i )

1−g.

We have thus proved the following theorem.

Theorem 3.4 (Mednykh’s formula). Let Σ be a closed connected orientable surface of genus g. Then

Z(Σ) =
n∑

i=1

(λ2
i )

1−g
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Corollary 3.5. Let G be a finite group and let Σ be a closed connected orientable surface of genus g.
Then the number of isomorphism classes of principal G-bundles on Σ is given by

|Hom(π1(Σ), G)|
|G|

=
∑
ρ∈Ĝ

(dim ρ/|G|) 2−2g

Proof. Recall that we identified ZG(S
1) with the algebra E = ClassFns(G) of class functions on

G, with Frobenius form

λ(f) =
f(1)

|G|
.

and commutative multiplication given by convolution. The characters satisfy the relation

χρ ∗ χσ = δρσ
|G|
dim ρ

χρ

which means that the normalized characters

dρ =
dim ρ

|G|
χρ

are primitive orthogonal idempotents:

dρ ∗ dσ = δρσdρ,
∑
ρ∈Ĝ

dρ = 1

The values of the Frobenius form on these idempotents are

λ(dρ) =
(dim ρ)

|G|

and so inserting into Theorem 3.4 gives

ZG(Σg) =
∑
ρ∈Ĝ

(
dim ρ

|G|

)2−2g

.

But recalling that

ZG(Σg) =
|Hom(π1(Σ), G)|

|G|

we obtain the desired formula.
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