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Abstract

We construct untwisted Dijkgraaf-Witten theory as an example of a 2-dimensional topolog-
ical quantum field theory (TQFT) with gauge group a finite group G. We then use this TQFT
to give proof of Mednykh’s formula, which relates the number of homomorphisms from the
fundamental group of a surface ¥ to G and the dimensions of the irreducible representations

of G.
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1 Construction of classical Dijkgraaf—Witten theory

Let G be a finite group and let M be a compact oriented manifold (possibly with boundary).
Dijkgraaf—Witten theory is a topological gauge theory with gauge group . The fields of the
theory on M are principal G-bundles on M. Since G is finite, a principal G-bundle on M (with
flat connection) is precisely a groupoid homomorphism

I,(M) — BG

from the fundamental groupoid of M to the groupoid BG with one object whose automorphism
group is GG. Since G is finite, there is a unique flat connection on any principal G-bundle because
of the path lifting property. If P is a principal G bundle on M, then we send P to its holonomy



functor
Fp: Hl(M) — BG

defined as follows. We choose trivializations P, = G for each point z. Parallel transport along a
path v : x — y gives a G-equivariant bijection 7, : P, — P,. In chosen coordinates P, = G,
P, = G, this map acts by left multiplication:

Now, if we change the identifications by left-multiplying each trivialization by some element
h, € G, P, = G viap +— h'g, then the new parallel transport elements become:

F'([y]) = hyF([7])h, "

Conversely, let F, F" : TI;(M) — BG be two functors. A natural transformation n : F' = F’
consists of the following data. For each object x € M, a morphism 7, : F'(x) — F'(x) in BG.
But since both F'(x) = F'(z) = *, this means 7, € G.

These must satisfy the naturality condition for every morphism [y : x — y] in I1; (M):

F'([v]) o me = my o F([7]).

In BG, composition of morphisms is multiplication in G, so this reads:

F'([0) - me = my - F([3]) = m, (Y],
Therefore the category of principal G-bundles on M is precisely the functor category
Hl(M) = BG,

and classical Dijkgraaf—~Witten theory assigns this functor category to M. This category whose
morphisms are natural transformations between functors is itself a groupoid.

Example 1.1 (Connected M). If M connected, there is an equivalent groupoid D with objects given
by group homomorphisms 7, (M) — G. The morphisms between group homomorphisms are given by
conjugation in G.

To see this, choose a basepoint zy € M. In the fundamental groupoid II; (M), the endomorphisms of
xq are precisely m (M, xy). A functor F': II;(M) — BG sends objects (points of M) to the unique
object of BG, and sends each morphism (homotopy class of path) to an element of G = Autpgg(*).

In particular, the restriction pp = F |En dzg)’ ™ (M, x¢) — G is a group homomorphism, because F’
preserves composition and inverses. So every object F' determines a representation pg: m (M, z9) — G.



A morphism 7: F' = F” is a natural transformation, which is determined by the element 7,,, € G. The
naturality square for 7 and any loop v € (M, o) given by

F(v)
—

F(x) F(x)

Nz Nz

/ /
Fl(@) <y £(2)

says that

Nao PE(Y) = PP () Mo
so pr and pp differ by conjugation in GG. Note that this conjugation can be thought of as changing the
basepoint zy € M to another point x € M, because the conjugation is using the functoriality of /' on a

path from xy to x. There is another conjugation what one divides out by which is changing the anchor
point in the fiber of the principal G-bundle over x.

Conversely, for each x € M, choose once and for all a path ¢, : zo — x with ¢;, = id. (Any choice
will do; different choices produce naturally isomorphic functors.) Given a homotopy class [v] : © — y,
form the loop at zy and define £(y) = [¢,' - v ¢] € m (M, xo). Set F,([7]) := p(¢(7)) € G. This
respects composition:

Fy([v2 0m]) = p(les vamea]) = p(lez 'r2ey]) p(le, 'nca)) = Fo([v2]) Fo([n)

Suppose g : p — p in D, so p'(7) = gp(y)g~*. Define a natural transformation n : W(p) = ¥(p’) by
setting ), := g € G forall x € M. Naturality is automatic because

1y () () = gp(l(y)) = ' (L(7) g =Y ) (V) N

So F), is indeed a functor I, (M) — BG, and by construction £, p}m(
lence of groupoids D ~ (I, (M) = BG).

M) = P This gives an equiva-

Example 1.2. Let M = S'. A principal G-bundle on M (with flat connection) may then be identified
with a homomorphism Z — G, hence with an element of G. In this case I1;(S') = BG is the groupoid
G /| G of elements of GG up to conjugation. Specifically it is the groupoid whose objects are the elements
of GG and where the morphisms g — h are given by elements a € G such that aga™* = h.

We describe the holonomy interpretation of this. Take the canonical generator v of 7 (S!). Lift v
starting at v in the fiber over x,. Because of the path lifting property, the lifted path 7 is unique and
ends at some u - g for a unique g € G. Define this g as the holonomy element associated to v and the
choice of u.

So with a fixed choice of u, we get a well-defined element g. But what if we had chosen a different
anchor v’ = wu - h in the fiber at x(? Lift 7y starting at v’. You’llend atu'- ¢’ = (u-h)-¢ = u- (hg'). On
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the other hand, uniqueness of lifts forces this endpoint to agree with the previous one: w - g. Therefore
hg’ = gh so the holonomy element depends on the choice of anchor up to conjugation.

Since we only consider compact manifolds M, the fundamental group of each connected compo-
nent of M is finitely generated, hence I1; (M) — BG is an essentially finite groupoid (a groupoid
equivalent to a groupoid with finitely many morphisms).

Definition 1.3. The assignment M +— Ag (M) defined by
M — Ag(M) = I1,(M) = BG

1s contravariant functor
Ag : Man — Gpd (D)

from the category of manifolds to the category of groupoids. It is known as the moduli stack of
principal G-bundles (or classical Dijkgraaf-Witten theory) on M.

Since we want to build a TQFT, we would like to extend A to cobordisnﬁ. This is done as fol-
lows. If M is an n-dimensional compact oriented manifold with boundary X LI'Y (so a cobordism
X —Y), then M, X, Y together define a cospan

SN

X Y

of manifolds. Applying IT;(—) gives a cospan

H1 )

(X) I (Y
\ / 3)
Iy (M)

of groupoids, and applying (—) = BG gives a span

PN

of groupoids.

There is a category Span(FinGpd) whose objects are essentially finite groupoids and whose
morphisms are (isomorphism classes of) spans of essentially finite groupoids, where composition
of spans is given by taking pullbacks as follows:
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Y xXx, Y5

IS
/\/\

The assignment M — Ag(M) then extends, by the groupoid Seifert-van Kampen theorem, to a
(symmetric monoidal) functor

(&)

Ag : nCob — Span(FinGpd) (6)
which we might call classical (untwisted) Dijkgraaf-Witten theory.

One has to check that the assignment is functorial and symmetric monoidal. The justification
isthatif M; : X — Y and My : Y — Z glue along Y to M, o M, then for inclusions
X — M, < Yand Y — M, < Z the groupoid Seifert—van Kampen theorem gives a pushout:
Iy (Mg o My) ~ II;(My) I, vy 11 (M,). Applying Fun(—, BG) (which is contravariant) turns
that pushout into a pullback: Ag(M; o M) ~ Aq(Mi) Xa,w) Ac(Msz). But composition in
Span(FinGpd) is pullback of the middle objects. Hence the span for the glued cobordism equals
the pullback of spans—so the assignment is functorial.

To check that the functor is symmetric monoidal, note that II; sends disjoint unions to coproducts
I (X U X)) 210 (X) I (X))
Functors into BG turn coproducts into products:
Fun(IT; (X) IT T, (X"), BG) = Fun(I;(X), BG) x Fun(Il;(X"), BG)

Hence Aq(X U X') =2 Ag(X) x Ag(X') and similarly for cobordisms (spans tensor by taking
products). The unit & maps to the terminal groupoid 1 = Fun(@, BG). The symmetry (swap of
components) is preserved, so the functor is symmetric monoidal.

2 Linearization and quantization

Quantum (untwisted) Dijkgraaf—Witten theory Z is obtained from the classical theory Ag by
applying a linearization functor

C) : Span(FinGpd) — FinVect.



In a quantum field theory, the partition function on a manifold M is heuristically written as

Z(M) = /ﬁ . Mei5<ﬁeld>1>(ﬁe1d)

The fields are the configurations of the theory (here, principal G-bundles on M with connection,
if we were in Chern-Simons). S is the action functional and D(field) is the (heuristic) "measure"
on the space of fields. In the topological case (finite gauge group, no action term), this integral
reduces to "summing over all gauge fields," i.e. over all principal G-bundles.

Definition 2.1. The groupoid cardinality of an essentially finite groupoid X is defined as

1
P DAL e

[z]emo(X

Remark 2.2. Naively we might try
Z(M) = #{principal G-bundles on M }

But that’s not quite right. To get a correct measure we shouldn’t just count isomorphism classes, but
rather weight each object by 1/|Aut(P)|. For example, if G acts on a set X, the groupoid cardinality of
the action groupoid X // G is

B 1y
#XTG) = D Sbe@] = IaI

[z]eX/G

If X is an essentially finite groupoid, let C* denote the space of complex-valued functions on the
objects of X such that if there exists a morphism p :  — y in X, then f(x) = f(y). Equivalently,
CX denotes the space of complex-valued functions on the isomorphism classes 7y (X ) of objects
of X. A functor ' : X — Y induces two linear maps between these spaces of functions. We have
the pullback

F*.CY - C¥

given by

We also have the pushforward

given by
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The pushforward is adjoint to the pullback in the following sense. C* admits a distinguished linear

functional fa)
X x
/X :C* 5 f — Z m S (C,

zem(X)

which should be thought of as integration over X. The vector space C¥ is also a commutative
algebra under pointwise multiplication, and the integral of the identity recovers the groupoid car-
dinality of X. These two structures combine to give an inner product

= /Xf(fc)g Z |Aut g

on C¥, and the pushforward is adjoint to the pullback with respect to this inner product. It should
be thought of as integration along fibers.

Proposition 2.3. The pushforward and pullback satisfy the adjointness property.

Proof. We need to check thatif f € C¥ and g € C¥, and F : X — Y is a functor between
essentially finite groupoids, then

(E"9, [)x = (9, F.f)y

Expanding the left hand side gives:
. (F7g)(
F = —_—
(9, f)x Z |Autx | Z |Aut
[z]€mo(X) []
Expanding the right hand side gives:

(9. Ffiy = > g|Aut)y>

[ylemo(Y)

B 9(y) | Aut(y)] .
B Z | Aut Z ]Aut(x)| /(@)

_Z Z |Aut

] [2]:F(x
which is the same as the left hand side after reindexing the sum over [z]. [
Definition 2.4. The linearization functor C(~) : Span(FinGpd) — FinVect is defined on objects

by
X — CX



and on morphisms by
A
VN
X Y

g op*:CY¥ = CY.

is sent to the linear map

which explicitly takes the form
(o)) = 3 ).

z€mo(Z):q(2)=y
Definition 2.5. We define untwisted Dijkgraaf-Witten theory as the composition of the linearization
functor with the classical theory:
Zg = C*¢ : nCob — FinVect.

Proposition 2.6. For a finite group G and a compact oriented n-manifold 3, Z4(X) : C — C is given
by multiplication by the groupoid cardinality of Bung(X):

1
Z¢(E) = |Bung(X)| = > TAw(P)|
[P]€mo Bung (%)

If X is connected, this number is equal to

| Hom(m X, G)[/|G]|

Proof. For a closed oriented n-manifold 32, both boundaries are empty, so the bordism functorial
assignment is just

Bung(0) < Bung(X) - Bung(0).

But Bung () & *, a one-point groupoid with | Aut(x)| = 1. So our span is simply
* <+ Bung (%) Lk

where both maps are the unique functor to the one-point groupoid. Now apply the push-pull
formula to our situation. Let 1 € C* be the constant function with value 1. Then

(g 0P (D)) = yoo Al

| Aut(z)|
z€mo(Bung (X)): q(z)~y
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Since ¢(z) ~ y is automatic (there is only one isomorphism class in x), and | Aut(y)| = 1, this
reduces to multiplication by

1
2 TR

[P]€mo Bung (X

which is exactly the groupoid cardinality of Bung(X).

Fix a basepoint on Y. Isomorphism classes of principal GG-bundles with flat connection are in
bijection with conjugacy classes of homomorphisms p : m;(2) — G. Moreover, the automorphism
group of the bundle corresponds to the centralizer of the image:

Aut(P,) = Calp):={9€G: gp(v)g~" = p(7) V7}.

Hence

1
Z6%) = 2 i

Now view this as the groupoid cardinality of the action groupoid [Hom(m ¥, G)/G], where G acts
by conjugation. By the orbit-stabilizer identity (or Burnside counting), for any finite GG-set X one

has
3 v X
| Stab(z)] |G|’
[z]eX/G

Apply this to X = Hom(m; %, G) to obtain

Z 1 _ |Hom(m X, G)|
> Caly) @

This is exactly the claimed formula. [

3 TQFT and Mednykh’s formula

We now restrict our attention to the case n = 2. In particular, we consider untwisted Dijkgraaf-
Witten theory as a 2-dimensional TQFT.

Definition 3.1. A 2-dimensional topological quantum field theory is a symmetric monoidal functor
7 :2Cob — Vect
where 2Cob is the category whose
* Objects of 2Cob: finite disjoint unions of circles.

* Morphisms: oriented compact surfaces with boundary, viewed as cobordisms between col-
lections of circles.



Explicitly, we have the following data. Under such a functor
« Z(S') = A, a vector space.
* pair of pants (2 in, 1 out): multiplication m : A ® A — A,

* pair of pants (1 in, 2 out): comultiplication A : A - A® A,

cap (no in, 1 out): unitn : C — A,

cup (1 in, no out): counit A : A — C.

This structure is exactly a commutative Frobenius algebra. This linear functional ) is the trace map
of the Frobenius algebra. The nondegeneracy condition on the Frobenius pairing (a, b) +— A(ab)
comes precisely from gluing two cups with a pair of pants (geometrically giving a sphere).

In this case 2-dimensional TQFTs have a known classification as follows. If Z is such a TQFT,
then Z(S') is a commutative Frobenius algebra (an algebra A equipped with a linear functional
A such that the bilinear form A(ab) is nondegenerate), and conversely given any commutative
Frobenius algebra A there is a unique (up to equivalence) TQFT such that Z(S') = A. The
structure maps of A and the axioms they satisfy come from a description of 2Cob in terms of
generators and relations; for example, the multiplication in A comes from the pair of pants and the
linear functional comes from the cup.

The commutative Frobenius algebra associated to untwisted Dijkgraaf-Witten theory can be ex-
plicitly described. We saw above that Ag(S!) is the groupoid of elements of G up to conjugation.
It follows that Z¢(S") can be identified with the space of class functions on G.

Example 3.2 (Cap). The linear functional on Zg(S') is induced by the cap

St /Dz\ @

which, after applying the classical functor Ag(—), gives the span of groupoids

BdG

N

GG 1

where G // G, as above, denotes the groupoid of elements of GG up to conjugation; BG, as above, denotes
the groupoid with one object and automorphism group G; and 1 denotes the trivial groupoid. The map
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BG — G J/ G is the inclusion of the identity into G // G. Linearizing, we obtain the linear functional

Zg(Sl) S5 fr— %1’) € Zg(g) = C,

where 1 denotes the identity element of GG. In particular, the formula

f()

= a

comes from
1. Pullback along BG — G /| G: evaluate f at the identity.

2. Pushforward along BG — 1: weight by ﬁ (the groupoid cardinality of BG).

Example 3.3 (Pair of pants). The multiplication on Zg(S") is induced by the pair of pants, which,
after applying the classical functor Ag(—), gives the span of groupoids (note that the pair of pants is
homeomorphic to a sphere with three holes has fundamental group the free group on two generators)

GxGJG

K;,// \\<\
X=G)GxG|G G)G=Y

where G acts on G x G by simultaneous conjugation: a - (g, h) = (aga™',aha™'), and s is restriction
to the two incoming boundaries and ¢ is restriction to the outgoing boundary. Explicitly,

s([(g, M) = (g1, [n])
t([(g, M)]) = [gh]

Linearization sends a span to a linear map by pull-push:

m = t,os" : C[X] — C[)].

Identify C[G // G] with class functions on G. Write elements of C[X] = ClassFns(G) ® ClassFns(G)
as f1 ® fo. The convolution product on the quotient stack [G /G| (the groupoid of G acting on itself by
conjugation) is given by

A
i Bllo) = Z %ﬁ(hﬁﬁ(hﬂ
[(h1,h2)]: hiha~g 1, 12

where A Aut(g) = Cg(g) and Aut(hy, he) = Cg(hi) NCeq(hs). We show that this reduces to the usual
convolution on the space of class functions on G:

(hixf)(g) = D fll)fa(ha)

hiha=g
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when the automorphism factors are expanded. Consider the multiplication map
m: GxG— G, m(hl,hg) = hyhs.
For fixed g € G, the fiber
m_l(g) = {(hhhg) ceGxG: h1h2 = g}

is acted on by the centralizer C';(g) via simultaneous conjugation:
a-(hi,hy) = (ahia™, ahga™), a € Ca(g).

This action preserves the fiber since ahyhoa™' = aga™ = g. The stabilizer of (hy, hy) under this action
is

StabCG(g)(h’h h?) = OG(hl) N CG(hQ) - Aut(h’h h?)

Hence each orbit has cardinality

[Calg)l _  [Aut(g)]
|C(;(h1,h2)| |Aut(h1,h2)|

Since f1, f> are class functions, they are constant on conjugacy classes, so

S oAbt = S RO ) ).

hiha=g orbits [(h1,h2)]Cm—1(g) | AUt<h17 hz)‘

Let Z : 2Cob — FinVect be a 2 -dimensional semisimple oriented TQFT. Then £ = Z(S1) is a
finite-dimensional commutative semisimple Frobenius algebra over C with Frobenius form

A Z(SY) = C
Semisimple implies there are primitive orthogonal idempotents d; with

didj - 6ijdi7 Zdl - 1,

and the Frobenius form is diagonal in this basis:

As an algebra it is a finite product of copies of C. Z(S') is determined up to isomorphism as a com-
mutative Frobenius algebra by the values A(eq), ..., A(e, ), which are necessarily all nonzero (this
is necessary and sufficient for A(ab) to be nondegenerate). In particular, these values determine
Z (%) for all closed connected orientable surfaces X.

The comultiplication A : £ — E ® FE is adjoint to j:
(Mz®y),z) = (x®y,Az).
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Applying this with x = y = 2 = d;, and using that d? = d; and the basis is orthogonal, we get
A(d;) = N\ d; ® d;.
The handle element is w := p o A(1) € E. The comultiplication A : E — F ® FE corresponds

to a surface with one input and two outputs. The multiplication 1 : ¥ ® ' — E corresponds to a
surface with two inputs and one output.

If we compose them,
EEQE-SE,

we get the algebraic map corresponding to a surface with one input and one output. Composing
with the counit A : £ — C (a "cap") gives a surface with one handle and the output capped off (a
"closed handle").

For a closed genus-g surface, the same handle argument shows that
Z(2,) = Mw™).

We start with a sphere with one output (gives the unit), then glue on g — 1 handles — each handle
corresponds to multiplying by w — and finally cap off (apply the counit \).

Because 1 = ) . d;, we get

w=p (Z A2d; @ dl-) => A 7d;.
As the d; are orthogonal idempotents
wI = Z /\i_Z(g_l)di
But e(d;) = (d;,1) = (d;, d;) = \?. Hence

Z(S) =Y AN =30t

)

We have thus proved the following theorem.

Theorem 3.4 (Mednykh’s formula). Let X be a closed connected orientable surface of genus g. Then

n

Z(£) =) (X))

i=1
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Corollary 3.5. Let GG be a finite group and let X be a closed connected orientable surface of genus g.
Then the number of isomorphism classes of principal G-bundles on X is given by

|H0m(7|ré(‘2)7 G)‘ — Z(dimp/’GD272g

ped

Proof. Recall that we identified Z¢(S"') with the algebra F = ClassFns(G) of class functions on
G, with Frobenius form
f()

Af) = —=~.
(N="g
and commutative multiplication given by convolution. The characters satisfy the relation

Gl

Xp * Xo = 5padi—Ianp

which means that the normalized characters

dim p
d = —
RTINS

are primitive orthogonal idempotents:
dydy =0pod,, Y dy=1
peG
The values of the Frobenius form on these idempotents are

(dim p)

/\(dp> = |G|

and so inserting into Theorem 3.4 gives
dim p 22
pEG
But recalling that

ze(y = HonriD.6)

we obtain the desired formula. [
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