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Abstract
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1 Semisimple Lie algebras

1.1 Preliminaries
We recall the basic structure theory and representation theory of semisimple Lie algebras, culmi-
nating in a discussion of the Weyl character formula. Let g be a semisimple Lie algebra over the
complex numbers C. In particular, g need not be finite-dimensional, until we ask it to be. We
follow [1].

Definition 1.1. Recall that a Lie algebra is solvable if its derived series eventually becomes zero.
The derived series is defined by L(0) = L, L(1) = [L,L], and L(n+1) = [L(n), L(n)].
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Definition 1.2. A Lie algebra L is semisimple if and only if its radical (the largest solvable ideal)
is zero.

Definition 1.3. The Killing form of a Lie algebra L is the bilinear form κ(x, y) = tr(ad(x)ad(y)).

For H ∈ h, look at ad(H). Since h consists of simultaneously diagonalizable endomorphisms,
ad(H) is diagonalizable.

Thus we can decompose:
g = h ⊕

⊕
α∈Φ

gα,

where
gα = {X ∈ g : [H,X] = α(H)X ∀H ∈ h}.

The nonzero functionals α ∈ h∗ are the roots, and Φ is the root system. The following proposition
is the beginning of the story of the geometry of root systems. The nondegeneracy of the Killing
form on the Cartan subalgebra allows us to identify h with its dual h∗. In particular, we get an
inner product, lengths, angles, and reflections. However, note that the notion of simple, positive,
and integral roots does not come from the Killing form.

Proposition 1.4 (Humphreys 8.2). The Killing form κ is nondegenerate on h.

Proof. Recall that a Lie algebra is semisimple if and only if its Killing form is nondegenerate.
One shows that the restriction of the Killing form to the centralizer L0 = CL(h) of h in L is
nondegenerate. Then one shows that in fact L0 = h.

Let g be a semisimple Lie algebra, h a maximal toral subalgebra, Φ ⊂ h∗ the root system, which
we partition into positive and negative roots.

Thus we will associate to ϕ ∈ h∗ an element tϕ ∈ h such that

κ(tϕ, h) = ϕ(h) for h ∈ h.

Then we will define an inner product on h∗ which we will denote

(λ|µ) = κ(tλ, tµ).

If α ∈ Φ ∪ {0} we will denote

gα = {x ∈ g | [h, x] = α(h)x for h ∈ h}.
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If α = 0, then gα = h. On the other hand, if α ∈ Φ, then gα is one-dimensional. We have the
decomposition

g = h⊕
⊕
α∈Φ

gα.

By Humphreys Proposition 8.3(c) we have, for x ∈ gα and y ∈ g−α,

[x, y] = κ(x, y)tα.

We will denote by

hα =
2tα
(α|α)

.

Thus if xα ∈ gα we have [hα, xα] = 2xα. If

α∨ =
2α

(α|α)

then for λ ∈ h∗ we have (α∨|λ) = λ(hα). Either α∨ or hα is called a coroot. They are really
the same thing if we identify h with its double dual h∗∗. The factor 2

(α|α) is chosen so that the root
vectors xα, yα together with hα form a standard sl2-triple, with the eigenvalue of xα under hα equal
to 2.

We will denote by ρ half the sum of the positive roots. Humphreys denotes this δ, but the notation
ρ is now universally used by everyone. If α ∈ Φ we will denote by rα the reflection

rα(x) = x− (x|α∨)α.

Remark 1.5. Recall that for each root α, we have an sl2-triple {xα, yα, hα}. When you restrict
the adjoint representation of g to this sl2, every other root space gβ becomes a finite-dimensional
sl2-representation.

For a root α ∈ Φ, we can find xα ∈ gα, yα ∈ g−α, and hα = [xα, yα] ∈ h satisfying the relations
of sl2:

[hα, xα] = 2xα,

[hα, yα] = −2yα,
[xα, yα] = hα.

So sα = ⟨xα, yα, hα⟩ ∼= sl2 is a subalgebra of g. The adjoint representation is ad : g→ gl(g) with
ad(z)(w) = [z, w]. If we restrict ad to the subalgebra sα, then g becomes an sl2-module.
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Take another root β ∈ Φ, β ̸= ±α. For any H ∈ h, [H, gβ] ⊆ gβ , so gβ is invariant under h. In
particular, under hα, vectors in gβ have weight [hα, xβ] = β(hα)xβ for xβ ∈ gβ .

xα and yα act as “raising” and “lowering” operators:

[xα, gβ] ⊆ gβ+α,

[yα, gβ] ⊆ gβ−α.

So if you start with a vector in gβ , repeated commutators with xα and yα move you up and down
the α-string through β: β, β + α, β + 2α, . . . , β − qα.

Now suppose g is finite dimensional. Then there are only finitely many roots, so this process
stops in both directions. Thus the span

⊕
k gβ+kα is a finite-dimensional representation of sl2. It

decomposes into irreducible sl2-modules, with weights given by integers

β(hα), β(hα)− 2, . . . , β(hα)− 2m

From this structure one proves that if β is a root, then so is β − ⟨β, α∨⟩α, which is exactly the
reflection of β across the hyperplane orthogonal to α. The map

rα(x) = x− (x|α∨)α

is literally a reflection in the Euclidean space V = RΦ ⊂ h∗. One checks that rα(Φ) = Φ, i.e. it
permutes the set of roots.

In addition, since all the finite dimensional irreducible representations of sl2 are classified and
have 1-dimensional weight spaces, it follows that dim(gα) = 1 for all roots α.

Beware that this argument does not work if g is infinite-dimensional. In particular, Kac-Moody
algebras have imaginary roots which do not behave like real roots. The reflections rα for real roots
α still exist, but they do not generate a group which permutes all the roots.

If α is a simple root, we will also use the notation sα for rα. We have proved that sα maps α to its
negative and permutes the remaining positive roots. Therefore sα(ρ) = ρ− α and so

(ρ|α∨) = 1

for all simple roots α.

An element λ of h∗ is called an integral weight if (λ|α∨) ∈ Z for all α ∈ Φ+, or equivalently, for
all simple roots α. The integral weights form a lattice

Λ = {x ∈ V |(α∨|x) ∈ Z for α ∈ Φ+},
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called the weight lattice. We call λ ∈ h∗ dominant if (λ|α∨) ≥ 0 for all α ∈ Φ+ (or equivalently
for simple roots α). We call λ strongly dominant if (λ|α∨) > 0. Thus the special vector ρ is a
strongly dominant integral weight.

Here are a couple of important properties of the Weyl group action. Let V be the R-span of Φ in
h∗. The inner product ( | ) makes V into a Euclidean space, and h∗ = V + iV . The set

C+ = {x ∈ V |(α∨|x) > 0 for α ∈ Φ+}

is called the positive Weyl chamber. The dominant weights are the ones in C+.

Proposition 1.6 (Fundamental domain). The positive Weyl chamber is a fundamental domain for
the action of the Weyl group: if x ∈ V there is a unique element of C+ in the W orbit of x.

Recall that there is a partial order (known as dominance order) ⪰ on h∗ defined by

λ ⪰ µ ⇐⇒ λ− µ =
∑
α∈Φ+

nαα with nα ∈ Z≥0.

Proposition 1.7. Let λ be a dominant, integral weight and let w ∈ W . Then λ ⪰ wλ.

1.2 Highest weight modules
Let V be a g-module. For λ ∈ h∗ we denote the weight space

Vλ = {v ∈ V | h · v = λ(h)v for h ∈ h}.

We will say that V is h-diagonalizable if V is the algebraic direct sum of the Vλ.

Proposition 1.8. If V is h-diagonalizable, then so is any submodule or quotient module.

Proof. Let U ⊂ V be a submodule. We must show that an element of U may be expressed as a
finite linear sum of uλ ∈ Uλ. Since V has a weight space decomposition, we may write u as a sum
of uλ ∈ Vλ, and the problem is then to show that uλ ∈ U . There exist a finite number of λi such
that

u =
m∑
i=1

uλi ,

and we choose h ∈ h such that the values λi(h) are all distinct. Then for j = 0, . . . ,m− 1

hj · u =
∑

λi(h)
j uλi ∈ h.
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The m × m matrix {λi(h)j} is invertible since its determinant is a Vandermonde determinant.
Consider the vectors u, h · u, h2 · u, . . . , hm−1 · u. Each is in U , and together they form a linear
system: 

1 1 · · · 1
λ1(h) λ2(h) · · · λm(h)
λ1(h)

2 λ2(h)
2 · · · λm(h)

2

...
...

...
λ1(h)

m−1 λ2(h)
m−1 · · · λm(h)

m−1



uλ1
uλ2

...
uλm

 =


u

h · u
...

hm−1 · u

 .

This is a Vandermonde system. The matrix is invertible because the λi(h) are distinct. Applying
the inverse to this shows that each uλi ∈ U , as required.

This proves that a submodule of a h-diagonalizable module is diagonalizable. It follows that the
same is true for quotient modules, with (V/U)λ = Vλ/Uλ.

We will work exclusively with diagonalizable modules with dim(Vλ) <∞ for all λ ∈ h∗. We will
define the support supp(V ) = {λ ∈ h∗ | Vλ ̸= 0}.

Let U(g) be the universal enveloping algebra. Let n+ be the nilpotent subalgebra of g generated
by the gα (α ∈ Φ+), and let n− be the subalgebra generated by the gα with α ∈ Φ−. Then clearly
we have the triangular decomposition

g = n− ⊕ h⊕ n+.

Lemma 1.9. We have U(g) ∼= U(n−)⊗ U(h)⊗ U(n+) in the sense that the multiplication map

U(n−)× U(h)× U(n+) −→ U(g)

induces a vector space isomorphism U(n−)⊗ U(h)⊗ U(n+) −→ U(g).

Proof. This follows from the Poincaré-Birkhoff-Witt theorem (PBW) together with the triangular
decomposition. Namely, if {xi} is a basis for g, then PBW asserts that a basis for U(g) consists of
all elements of the form

xk11 · · ·x
kd
d , 0 ≤ ki ∈ Z.

Now we take the basis in a particular way, where its first 1
2
|Φ| elements are a basis for n−, the

next ℓ elements are a basis for h, and the last 1
2
|Φ| elements are a basis for n+. Then the element

xk11 · · ·x
kd
d factors uniquely as a product abc where a runs through a basis of U(n−), b runs through

a basis of U(h) and c runs through a basis of U(n+).
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We will call a vector v ∈ V a highest weight vector of weight λ if v ∈ Vλ and if xαv = 0 for
α ∈ Φ+. (Humphreys calls such v a maximal vector.) We will call V a highest weight module of
weight λ if it is generated by a highest weight vector v ∈ Vλ. (Humphreys calls a highest weight
module a standard cyclic module.)

Proposition 1.10. Suppose that v ∈ V is a highest weight vector. Then the g-submodule U(g)v
generated by v equals U(n−)v. The weight space Vµ = 0 unless µ ⪯ λ. We have dim(Vλ) = 1.

Proof. We note that any element of U(n+) may be written as a constant times an element of the
left ideal U(n+)n+, but this ideal annihilates v, so U(n+)v = Cv. Similarly U(h)v = Cv since
v ∈ Vλ. By Lemma 4,

U(g) = U(n−)U(h)U(n+)v = U(n−)v.

Consider the basis {x−α} (α ∈ Φ+) of n− with x−α ∈ g−α. Using a fixed order on Φ+, the
elements

∏
α∈Φ+ xkα−α are a PBW basis of U(n−). Since x−α maps Vµ to Vµ−α,∏

α∈Φ+

xkα−αv ∈ Vµ, µ = λ−
∑
α∈Φ+

kαα,

so µ ⪯ λ. Unless all kα = 0, µ is strictly ≺ λ, so Vλ is one-dimensional.

Remark 1.11. Beware that highest weight modules need not be irreducible. It is true that if a
highest weight module is finite dimensional, then it is irreducible and uniquely determined by
its highest weight, which must be a dominant integral weight. But infinite-dimensional highest
weight modules need not be irreducible, and even if they are irreducible, they need not be uniquely
determined by their highest weight.

In particular, if you consider g = sl2(C), then basis vectors of M(λ) are {fkvλ : k ≥ 0}. We
compute the action of e:

efmvλ = m(λ−m+ 1)fm−1vλ.

At m = λ+ 1: This becomes
efλ+1vλ = 0,

but the vector fλ+1vλ is nonzero in M(λ). So fλ+1vλ is a new singular vector, generating a proper
submodule. L(λ) is defined as

L(λ) = M(λ)
/
⟨fλ+1vλ⟩,

i.e. we quotient out the submodule generated by that new singular vector. In L(λ), the vector
fλ+1vλ is identically zero, so we get no new singular vectors.

Remark 1.12 (Computing the product efm in sl2). Using the relation [e, f ] = h, we can induct:
For m = 1:

ef = fe+ h.
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Suppose for m:
efm = fme+mfm−1(h−m+ 1).

Then for m+ 1:

efm+1 = e(fmf) = (efm)f

=
(
fme+mfm−1(h−m+ 1)

)
f

= fmef +mfm−1(h−m+ 1)f.

Now expand each part:

fmef = fm(fe+ h) = fm+1e+ fmh,

fm−1(h−m+ 1)f = fm−1(fh− 2f − (m− 1)f) = fmh− (m+ 1)fm.

where in the second line we used [h, f ] = −2f . So altogether:

efm+1 = fm+1e+ fmh+m(fmh− (m+ 1)fm)

= fm+1e+ (m+ 1)fmh−m(m+ 1)fm.

Proposition 1.13. Let V be a highest weight module with highest weight λ. A submodule U of V
is proper if and only if U ∩ Vλ = 0.

Proof. Since dim(Vλ) = 1, if U ∩ Vλ ̸= 0 then Vλ ⊆ U and then since Vλ generates V , it is clear
that U = V . On the other hand if U ∩ Vλ = 0 then clearly U is proper.

Proposition 1.14. Let V be a highest weight module with highest weight λ. Then V has a unique
maximal proper submodule. Moreover V has a unique irreducible quotient.

Proof. Let Σ be the set of proper submodules of V , and let

W =
∑
U∈Σ

U.

By Proposition 3 each U ∈ Σ is diagonalizable, so evidently for µ ∈ h∗

Wµ =
∑
U∈Σ

Uµ.

We apply this with µ = λ. Since U ∈ Σ is proper, Uλ = 0 by the previous proposition, and so
Wλ = 0. This shows that W is proper. We have proved that W is the unique maximal proper
submodule of V , and consequently V/W is the unique irreducible quotient.
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Theorem 1.15. Let λ ∈ V ∗. There is a highest weight module M = M(λ) with highest weight
vector m ∈ Mλ with the following universal property. If V is another highest weight module with
highest weight λ and if v ∈ Vλ, then there is a unique g-module homomorphism M → V mapping
m 7→ v. The map ξ 7→ ξ · v is vector space isomorphism U(n−)→M .

Proof. Note that since h normalizes n+, b = h ⊕ n+ is a subalgebra of g, the “Borel subalgebra.”
As in Lemma 4, U(g) ∼= U(n−) ⊗ U(b), that is, the multiplication map U(n−) × U(b) → U(g)
induces a vector space isomorphism U(n−)⊗ U(b) → U(g). This result is a simple consequence
of this fact.

To elaborate, regarding C as a one-dimensional abelian Lie algebra, we have a Lie algebra homo-
morphism θλ : b → C that maps H ∈ h to λ(H), and n+ to zero. Thus let H1, . . . , Hℓ be a basis
of h and xα (α ∈ Φ+) be a basis of n+. By the PBW theorem, the elements

Hk1
1 · · ·H

kℓ
ℓ

∏
α∈Φ+

xkαα

with ki and kα nonnegative integers are a basis for U(b). It is understood that in the product
∏

xkαα
the roots α ∈ Φ+ are taken in a fixed definite order. We then have

θλ
(
Hk1

1 · · ·H
kℓ
ℓ

∏
α

xkαα
)
=

{∏
λ(Hi)

ki if all kα = 0,

0 if any kα > 0.

Now let Jψ be the left ideal generated by ξ − θλ(ξ) for ξ ∈ b. Let

M = M(λ) = U(g)/Jψ,

and let m be the image of 1 ∈ U(g) in M(λ).

It is clear from the PBW theorem that Hv = λ(H)m for H ∈ h, while n+v = 0, and moreover
from U(g) ∼= U(n−) ⊗ U(b), it is clear that every element of M(λ) may be written uniquely as
η · v for η ∈ U(n−).

Now let us verify the universal property. Let V be a highest weight module with weight λ, and let
vλ ∈ Vλ be a generator. Then we have a surjective U(g)-module homomorphism

U(g)→ V, ξ 7→ ξ · vλ,

and since β · v = θλ(β)v for β ∈ b, Jψ is in the kernel. Thus the map factors uniquely through
U(g)/Jψ = M(λ).

Corollary 1.16. Let λ ∈ h∗. Up to isomorphism, g has a unique irreducible highest weight module
L(λ) with highest weight λ.
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Proof. Every highest weight module is a quotient of M(λ). Since M(λ) has a unique irreducible
quotient, there is a unique irreducible highest weight module.

Remark 1.17. The irreducible quotient L(λ) might be finite or infinite dimensional. Recall that λ
is called integral if ⟨α∨, λ⟩ ∈ Z for all coroots α∨, and dominant if ⟨α∨, λ⟩ ≥ 0. If λ is a dominant
integral weight, then L(λ) is finite-dimensional. On the other hand if λ is not integral, L(λ) will
be infinite dimensional, and unless ⟨α∨, λ⟩ ∈ Z for some coroot α∨, we will actually have M(λ)
irreducible, and L(λ) = M(λ).

Remark 1.18 (Reducible highest weight modules are not unique). Let g have two simple roots
α1, α2 (e.g. sl3). Fix a weight λ such that both integers ⟨λ + ρ, α∨

1 ⟩, ⟨λ + ρ, α∨
2 ⟩ are positive.

Then the Verma module M(λ) contains two distinct singular vectors (i.e. highest weight vectors
inside M(λ) below the top) of weights s1 ·λ and s2 ·λ (dot action). They generate two different
submodules N1 = U(g) vs1·λ, N2 = U(g) vs2·λ. Now the quotients M(λ)/N1, M(λ)/N2 are both
highest weight modules of highest weight λ, both reducible, and not isomorphic (their composition
series differ). Hence reducible highest weight modules with the same top weight are not unique.

Remark 1.19 (Importance of the dot action). The BGG theorem tells us: if µ is a weight such that
⟨λ+ ρ, α∨⟩ ∈ Z>0, then there exists a singular vector in M(λ) of weight sα · λ := sα(λ+ ρ)− ρ.

Additionally, in category O, irreducible highest weight modules L(λ) can only appear as compo-
sition factors of Verma modules M(µ) if λ and µ are in the same dot-orbit under the Weyl group.
The dot action partitions the weight lattice into blocks inside which the category decomposes.

One can also give an interpretation via Harish-Chandra isomorphism. The center Z(U(g)) acts
on a Verma module M(λ) by a character. Harish-Chandra’s isomorphism says these central char-
acters are Weyl group invariant under the dot action. In other words, two highest weights λ, µ have
the same central character iff they’re in the same dot orbit.

More precisely, the BGG theorem states:

Theorem 1.20 (BGG theorem). If λ ∈ h∗, α a positive root, and m = ⟨λ + ρ, α∨⟩ ∈ Z>0, then
there exists a nonzero homomorphism of Verma modules M(sα · λ) ↪→ M(λ), where sα is the
reflection in the Weyl group, and the dot action is w · λ = w(λ+ ρ)− ρ.

Concretely: inside M(λ), there is a singular vector of weight sα · λ, which generates a highest
weight submodule isomorphic to M(sα ·λ). If w ≤ w′ in Bruhat order, then M(w ·λ) ↪→M(w′ ·λ).
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Theorem 1.21 (Classification of finite-dimensional irreducible modules). Let V be a finite dimen-
sional irreducible module. Then V ∼= L(λ) where λ is a dominant integral weight. Conversely, if
λ is a dominant integral weight, then L(λ) is finite-dimensional.

Proof. Assume that V is finite-dimensional. Choose a vector v ∈ Vλ where λ is a weight of V that
is maximal with respect to ≻. If α ∈ Φ+ then xαv ∈ Vλ+α so xαv = 0. Therefore v is a highest
weight vector. Then V = U(g)v since V is irreducible. We have proved that V is a highest weight
module; it is irreducible so V ∼= L(λ).

To show that λ is a dominant integral weight, let α be a simple positive root. The restriction of V
to the sl2 spanned by xα, x−α and hα is finite-dimensional, and xαv = 0. From the classification
of finite-dimensional sl2-modules, this means that (α∨ | λ) = λ(hα) ∈ Z is a nonnegative integer.
Therefore λ is dominant and integral.

We will omit the slightly tedious proof of the converse, that if λ is a dominant integral weight then
L(λ) is finite-dimensional. For a proof of this see Kac, Lemma 10.1.

Corollary 1.22 (Weyl). For V an irreducible finite-dimensional g-module, the highest weight λ is
a dominant integral weight, and

V ←→ λ

is a bijection between the irreducible highest weight modules and the dominant integral weights.

Now let g be finite dimensional. The Casimir element of the universal enveloping algebra U(g)
may be defined as follows. Let {γi} be a basis of g and {γi} the dual basis with respect to the
Killing form, so κ(γi, γ

j) = δij . Then

cg =

dim(g)∑
i=1

γiγ
i

Proposition 1.23. cg is independent of the choice of basis {γi}. It lies in the center of U(g).

Proof. For any finite-dimensional vector space V , there is a canonical iso V ⊗ V ∗ ∼= End(V ),
v ⊗ ϕ 7→ (w 7→ ϕ(w) v). Under this isomorphism, the element

∑
i vi ⊗ ϕi, where {vi} is a basis

and {ϕi} the dual basis, corresponds to the identity map on V . This element is independent of the
chosen basis (it’s just the coordinate expression of the identity endomorphism). Now take V = g
with the Killing form κ. So the canonical element

∑
i γi ⊗ γi ∈ g⊗ g corresponds to the identity

operator idg. Finally push Ω into U(g) using multiplication

cg = m(Ω) =
∑
i

γiγ
i
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This shows that cg is independent of the choice of basis. To see that cg is central, let x ∈ g. Then

Write
[x, γi] =

∑
j

aijγj.

Use ad-invariance of κ:

0 = κ([x, γi], γ
k) + κ(γi, [x, γ

k]) = aik + κ(γi, [x, γ
k]).

If we expand [x, γk] =
∑

j bkjγ
j , the relation above gives

bki = −aik,

i.e.
[x, γk] = −

∑
i

aikγ
i.

Now compute in U(g):

[x, cg] =
∑
i

[x, γi]γ
i +
∑
i

γi[x, γ
i] by the Leibniz rule

=
∑
i,j

aijγjγ
i −
∑
i,k

akiγiγ
k.

so [x, cg] = 0.

Proposition 1.24. Let hi be a basis of h and let hi be the dual basis of h with respect to the Killing
form, so κ(hi, h

j) = δij . Then if λ, µ ∈ h∗ we have

(λ|µ) =
∑
i

λ(hi)µ(hi).

Proof. Recall that the defining property of tµ is that

κ(tµ, h) = µ(h) for all h ∈ h.

First let us show that
tµ =

∑
i

µ(hi)h
i. (1)

To check this, we pair both sides with hj . We have

κ(tµ, hj) = µ(hj) = κ

(∑
i

µ(hi)h
i, hj

)
= µ(hj)
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is exactly the defining property of tµ. Since the hj span h and κ restricted to h is nondegenerate,
this proves (1).

Now (1) implies

(λ|µ) = κ(tλ, tµ) =
∑
i

µ(hi)κ(tλ, h
i) =

∑
i

µ(hi)λ(h
i).

again using the defining property of tµ.

Proposition 1.25. Let V be a highest weight module with highest weight λ. Then the Casimir
element cg acts by the scalar

|λ+ ρ|2 − |ρ|2

on V .

Proof. Since cg is central in U(g) it commutes with the action of g on any module V . Because V
is generated by a highest weight vector vλ ∈ Vλ, it is sufficient to show that

cgv = (|λ+ ρ|2 − |ρ|2)v

We need to choose dual bases of g with respect to the Killing form. For one basis, we choose a
basis hi of h = g0, and vectors xα ∈ gα.

Now we describe the dual basis. We know that the Killing form is nondegenerate on h, so we find
hi such that κ(hi, hj) = δij . Then we define another set of representatives yα ∈ gα so that

yα =
xα

κ(xα, x−α)

so that
κ(xα, y−β) = δαβ

Thus we have dual bases {hi, xα} and {hi, y−α}. Then

cg =
∑
i

hih
i +
∑
α∈Φ

xαy−α.

We want to rewrite this slightly. We write this as

cg =
∑
i

hih
i +

∑
α∈Φ+

xαy−α +
∑
α∈Φ+

x−αyα.
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Now observe that [xα, y−α] = tα. Certainly [xα, y−α] ∈ h so write it as tα. Then for h ∈ h, we
check that κ([xα, y−α], h) = α(h).

κ([xα, y−α], h) = κ(xα, [y−α, h])

But since h acts on the root vector y−α by [h, y−α] = −α(h)y−α, we get [y−α, h] = α(h)y−α. So
κ([xα, y−α], h) = κ(xα, α(h)y−α) = α(h)κ(xα, y−α).

And by construction of y−α, κ(xα, y−α) = 1. Thus κ([xα, y−α], h) = α(h).

That is exactly the defining property of tα. Hence [xα, y−α] = tα.

So in the enveloping algebra
xαy−α = tα + y−αxα.

Thus
cg =

∑
i

hih
i +

∑
α∈Φ+

tα +
∑
α∈Φ+

(y−αxα + x−αyα).

Since vλ is a highest weight vector it is annihilated by xα and yα when α ∈ Φ+. On the other hand,
Hvλ = λ(H)vλ for H ∈ h, and so

cgvλ =
∑
i

λ(hi)λ(h
i) +

∑
α∈Φ+

λ(tα).

The first expression equals (λ|λ) by the previous proposition, while∑
α∈Φ+

λ(tα) =
∑
α∈Φ+

⟨λ, α⟩ = 2(λ|ρ).

Thus
cgvλ =

(
(λ|λ) + 2(λ|ρ)

)
vλ =

(
(λ+ ρ|λ+ ρ)− (ρ|ρ)

)
vλ,

as desired.

1.3 Category O and the Weyl character formula
We will now prove the Weyl character formula following Kac. It will be useful to work in the
following category of representations, CategoryO, introduced by Bernstein, Gelfand and Gelfand.

Definition 1.26. A module is in CategoryO if it is h-diagonalizable with finite dimensional weight
spaces Vλ, such that there exists a finite set of weights {λ1, . . . , λN} such that Vµ = 0 unless µ ⪯ λi
for some i.
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This category contains all highest weight modules, is closed under finite direct sums, and it con-
tains all submodules and quotient modules of a Category O module. In particular it is an abelian
category with enough projectives and injectives and has a good homological theory. The Verma
modules M(λ) may or may not be irreducible. We will say a module V is a subquotient of a
module W if there are submodules U ⊃ Q of W such that U/Q ∼= V . Thus either a submodule or
a quotient module is a subquotient.

Proposition 1.27. Suppose that V is a highest weight module with weight µ and V is a subquotient
of M(λ). Then

|λ+ ρ|2 = |µ+ ρ|2.

Proof. Since c commutes with the action of g it must act as a scalar on M(λ), and we computed
that scalar to be |λ+ρ|2−|ρ|2. So it acts by the same scalar on any submodule, quotient module or
subquotient. Also c acts by the scalar |µ+ ρ|2− |ρ|2 on any highest weight module V with highest
weight λ, so

|λ+ ρ|2 − |ρ|2 = |µ+ ρ|2 − |ρ|2.
as desired.

Definition 1.28. Let V be a module in Category O. We define the character of V to be the formal
expression

χV =
∑
λ

dim(Vλ)e
λ

where eλ is a formal symbol for λ ∈ h∗.

Proposition 1.29 (Character of Verma modules). The character of M(λ) is

eλ
∏
α∈Φ+

(1− e−α)−1.

Proof. Let v be the highest weight vector. We recall from Theorem 8 that the map

ξ 7→ ξ · v

from U(n−) to M(λ) is a vector space isomorphism. So by the PBW theorem a basis of M(λ)
consists of the vectors ( ∏

α∈Φ+

xkα−α

)
v, kα ≥ 0,

where the positive roots Φ+ are taken in some fixed definite order. The weight of this vector is

λ−
∑
α∈Φ+

kαα,
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so
χV = eλ

∏
α∈Φ+

e−kαα = eλ
∏
α∈Φ+

(1− e−α)−1.

as desired.

Remark 1.30. Note that we get a geometric series at the end because M(λ) is a Verma module: it
has no relations among the negative root vectors beyond the Lie algebra relations themselves. This
is what makes Verma modules universal highest weight modules: you can push down indefinitely.

Definition 1.31. Let V be a module in Category O. A nonzero vector v ∈ V is called primitive
if there exists a proper submodule U ⊂ V such that v /∈ U but xαv ∈ U for all α ∈ Φ+ (or
equivalently, for all simple roots). We can take U = 0, so if xαv = 0 then v is primitive. In other
words, a highest weight vector is a primitive vector. More generally, v being primitive means that
the image of v in V/U is a highest weight vector for some proper submodule U of V . We will call
µ a primitive weight if Vµ contains a primitive vector.

A primitive vector is like a “hidden” highest weight vector, but visible only in a quotient.

Proposition 1.32. Let V be a module in CategoryO. Then V is generated by its primitive vectors.

Proof. If not, consider the submodule U generated by the primitive vectors. Then Q = V/U
would be a nonzero submodule. If we choose a nonzero vector in Q whose weight is maximal with
respect to ⪯, then its preimage in V would be a primitive vector, which is a contradiction.

Proposition 1.33. Let V be a module in Category O. Assume that V has only a finite number of
weights. Then V has finite length. That is, it has a composition series

V = Vm ⊃ Vm−1 ⊃ · · · ⊃ V0 = 0

such that each quotient Vi/Vi−1 is irreducible, isomorphic to L(µ), where µ is a primitive weight
of V . (The quotients Vi/Vi−1 are called composition factors, and they are independent of the
composition series, by the Jordan–Hölder theorem.)

Proof. We argue by induction on the number of linearly independent primitive vectors.

Choose a primitive weight µ that is maximal with respect to ⪯. Then clearly a primitive vector
v of weight µ must be a highest weight vector, so W = U(g) · v = U(n−)v is a highest weight
module. It has a maximal submodule W ′ and the quotient Q = W/W ′ is irreducible. Both V/W
and W ′ have fewer independent primitive vectors than V (note that there are finitely many weights
and each weight space is finite dimensional since we are in CategoryO), so by induction they have
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finite length. Since V/W , W ′ and the irreducible quotient W/W ′ all have finite length, it follows
that V has finite length.

Proposition 1.34 (Character of irreducible highest weight modules). Let λ ∈ h∗. Then the char-
acter χL(λ) is of the form

χL(λ) =
∑
µ⪯λ

|µ+ρ|2=|λ+ρ|2

cµχM(µ) (2)

where cλ = 1.

Proof. The weight µ of a primitive vector must satisfy µ ⪯ λ and |µ+ ρ|2 = |λ+ ρ|2.

Since the inner product is positive definite, this implies that there are only a finite number of
possible weights for primitive vectors (because |µ+ρ|2 = |λ+ρ|2 cuts out a sphere, and the lattice
of weights intersected with that sphere is finite). M(µ) has finite length because only finitely many
irreducibles can appear as factors, and modules in Category O have finite dimensional weight
spaces. Also the composition factors of M(µ) must be L(ν) where |ν + ρ|2 = |µ+ ρ|2 = |λ+ ρ|2.
This is because every composition factor is a highest weight module and every irreducible highest
weight module is of the form L(ν).

Let d(µ, ν) be the multiplicity of such L(ν). Then

χM(µ) =
∑
ν⪯µ

|ν+ρ|2=|λ+ρ|2

d(µ, ν)χL(ν).

Now the matrix d(µ, ν) indexed by pairs µ, ν is triangular since d(µ, µ) = 1 and d(µ, ν) = 0 unless
ν ⪯ µ. So it is invertible and we may write

χL(µ) =
∑
ν⪯µ

|ν+ρ|2=|λ+ρ|2

d′(µ, ν)χM(ν).

Applying this to µ = λ gives (2).

We will define the Weyl denominator

∆ = eρ
∏
α∈Φ+

(1− e−α).

Lemma 1.35. Let w ∈ W (the Weyl group). Then

w(∆) = sgn(w)∆.
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Proof. It is sufficient to check this if w = sαi
is a simple reflection. We recall that sαi

maps the
simple root αi to −αi and it permutes the remaining positive roots. Moreover sαi

(ρ) = ρ− αi. So
if we write

∆ = eρ(1− e−αi)
∏
α∈Φ+

α ̸=αi

(1− e−α),

then si maps eρ(1− e−αi) to

eρ−αi(1− eαi) = −eρ(1− e−αi),

and it fixes the product. Hence si(∆) = −∆.

Theorem 1.36 (Weyl Character Formula). Let V be a finite-dimensional irreducible representa-
tion of g. Thus by Theorem 1.21 there is a dominant integral weight λ such that V = L(λ). We
have

χV = ∆−1
∑
w∈W

sgn(w)ew(λ+ρ)

where W is the Weyl group and
∆ = eρ

∏
α∈Φ+

(1− e−α).

The following argument is due to Kac, improving the proof of BGG. As an application, Kac ex-
tended the applicability of the Weyl character formula for characters of integrable representations
of infinite-dimensional Kac-Moody Lie algebras. We will discuss this in more detail in the section,
following Chapter 10 of Kac [2].

Proof. Using Proposition 1.29 we may rewrite (2) in the form (note that the ρ in the exponent
comes from dividing by ∆)

χL(λ) =
∑
µ⪯λ

|µ+ρ|2=|λ+ρ|2

cµe
µ+ρ∆−1

It may be simpler to write this as

χL(λ) =
∑
µ∈P+

cµe
µ+ρ∆−1

and remember that cµ = 0 unless µ ⪯ λ and |µ+ ρ|2 = |λ+ ρ|2. We claim that if w ∈ W , then

cµ = sgn(w)cw◦µ. (3)

Indeed, since χL(λ) is invariant under the action of W , and since w(∆) = sgn(w)∆, we have an
identity ∑

µ∈P+

cµe
µ+ρ∆−1 =

∑
µ∈P+

sgn(w)cµe
w(µ+ρ)∆−1
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and comparing the coefficients of ew◦µ = ew(µ+ρ)−ρ on both sides of this equation gives (2).

We know that cλ = 1, since this is part of Proposition 1.34. So by (2), we will have terms
corresponding to µ of the form w ◦ λ and the sum of these terms is

∆−1
∑
w∈W

cw◦λe
w(λ+ρ)−ρeρ = ∆−1

∑
w∈W

sgn(w)ew(λ+ρ).

This is the right hand side of the Weyl character formula, so our task is to show that these are the
only terms. That is, we must show that cµ = 0 unless µ is of the form w ◦ λ for some w ∈ W .

Therefore we start with µ such that cµ ̸= 0. By Proposition 1.6, there exists w ∈ W such that
w(µ + ρ) is dominant. Let ν = w ◦ µ = w(µ + ρ) − ρ. We will show that ν = λ. In any case by
(2), cν ̸= 0 and so ν ≼ λ and |λ+ ρ|2 = |ν + ρ|2. We write

λ− ν =
∑
α∈Φ+

kαα,

where since ν ≼ λ we have kα ≥ 0. We note the identity, for a, b ∈ h∗:

|a|2 − |b|2 = (a+ b|a− b).

We apply this and learn that

|λ+ ρ|2 − |ν + ρ|2 =
(
λ+ ν + 2ρ

∣∣∣ ∑
α∈Φ+

kαα
)
.

Now λ and ν + ρ = w(µ+ ρ) are both dominant, so λ+ ν + 2ρ is strongly dominant meaning

(α∨ |λ+ ν + 2ρ) > 0

for all positive roots α. So |λ+ ρ|2 = |ν + ρ|2 implies that kα = 0 for all α and so ν = λ.

2 Infinite-dimensional Lie algebras
We begin with some definitions and constructions that will allow us to define Kac-Moody Lie
algebras. Then we introduce key tools for studying their representations, such as an invariant
bilinear form and the generalized Casimir operator. This will enable us to formulate and prove a
version of the Weyl character formula. This section follows [2].

2.1 Basic definitions

Definition 2.1. A Cartan matrix is a square integer matrix A = (aij) of rank l such that
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• aii = 2 for all i,

• aij ≤ 0 for i ̸= j,

• aij = 0 if and only if aji = 0.

A realization of a Cartan matrix A is a triple (h,Π,Π∨) where h is a complex vector space,
Π = {α1, . . . , αn} ⊂ h∗ and Π∨ = {α∨

1 , . . . , α
∨
n} ⊂ h are linearly independent sets such that

αj(α
∨
i ) = aij for all i, j and dim(h) = 2n− l.

Remark 2.2 (Finite-dimensional Cartan matrices). In the finite-dimensional case, the Cartan ma-
trix is invertible and positive definite and l = n, so dim(h) = n. The set of simple roots
Π = α1, . . . , αn is a basis of the real vector space spanned by the roots E = RΦ ⊆ h∗. Sim-
ilarly, the set of simple coroots Π∨ = α∨

1 , . . . , α
∨
n is a basis of E∨ = RΦ∨ ⊆ h.

Denote by Q the root lattice, i.e. the integer span of the simple roots Π. Let Q+ =
∑n

i=1 Z≥0αi
be the positive cone in Q. We write β ≥ 0 if β ∈ Q+ and β > 0 if β ∈ Q+ \ {0}. We define a
partial order on h∗ by λ ⪯ µ if and only if µ− λ ≥ 0. The sum of the coefficients of β =

∑
i kiαi

is called the height of β and denoted ht(β) =
∑

i ki.

Definition 2.3 (Universal Lie algebra associated to a Cartan matrix). Let A = (aij) be an n × n-
matrix over C, and let (h,Π,Π∨) be a realization of A. We introduce an auxiliary Lie algebra
g̃(A) with the generators ei, fi (i = 1, . . . , n) and h, and the following defining relations:

[ei, fj] = δijα
∨
i (i, j = 1, . . . , n),

[h, h′] = 0 (h, h′ ∈ h),

[h, ei] = ⟨αi, h⟩ei,
[h, fi] = −⟨αi, h⟩fi (i = 1, . . . , n; h ∈ h).

By the uniqueness of the realization of A it is clear that g̃(A) depends only on A.

Denote by ñ+ (resp. ñ−) the subalgebra of g̃(A) generated by e1, . . . , en (resp. f1, . . . , fn).

Theorem 2.4 (Properties of the universal Lie algebra associated to a Cartan matrix). Let g̃(A) be
the Lie algebra associated to a Cartan matrix A with realization (h,Π,Π∨).

a) g̃(A) = ñ− ⊕ h⊕ ñ+ (direct sum of vector spaces).

b) ñ+ (resp. ñ−) is freely generated by e1, . . . , en (resp. f1, . . . , fn).
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c) The map ei 7→ −fi, fi 7→ −ei (i = 1, . . . , n), h 7→ −h (h ∈ h), can be uniquely extended to
an involution ω̃ of the Lie algebra g̃(A).

d) With respect to h one has the root space decomposition:

g̃(A) =

⊕
α∈Q+
α ̸=0

g̃−α

⊕ h⊕

⊕
α∈Q+
α ̸=0

g̃α

 ,

where
g̃α = {x ∈ g̃(A) | [h, x] = α(h)x for all h ∈ h}.

Furthermore, dim g̃α <∞, and g̃α ⊂ ñ± for ±α ∈ Q+, α ̸= 0.

e) Among the ideals of g̃(A) intersecting h trivially, there exists a unique maximal ideal r.
Furthermore,

r = (r ∩ ñ−)⊕ (r ∩ ñ+) (direct sum of ideals).

Proof. Let V be the n-dimensional complex vector space with a basis v1, . . . , vn and let λ be a
linear function on h. We define an action of the generators of g̃(A) on the tensor algebra T (V )
over V by

α) fi(a) = vi ⊗ a for a ∈ T (V );

β) h(1) = ⟨λ, h⟩1, and inductively on s,
h(vj ⊗ a) = −⟨αj, h⟩vj ⊗ a+ vj ⊗ h(a) for a ∈ T s−1(V ), j = 1, . . . , n;

γ) ei(1) = 0, and inductively on s,
ei(vj ⊗ a) = δij α

∨
i (a) + vj ⊗ ei(a) for a ∈ T s−1(V ), j = 1, . . . , n.

This defines a representation of the Lie algebra g̃(A) on the space T (V ). To see that, we have to
check all of the relations. Provided one does that, the statements of the theorem quickly follow.

Using the relations it is easy to show by induction on s that a product of s elements from the set
{ei, fi(i = 1, . . . , n); h} lies in ñ− + h+ ñ+. Let now u = n− + h+ n+ = 0, where n± ∈ ñ± and
h ∈ h. Then in the representation T (V ) we have

u(1) = n−(1) + ⟨λ, h⟩ = 0.

It follows that ⟨λ, h⟩ = 0 for every λ ∈ h∗ and hence h = 0.

Furthermore, using the map fi 7→ vi, we see that the tensor algebra T (V ) is an associative envelop-
ing algebra of the Lie algebra ñ−. Since T (V ) is a free associative algebra, we conclude that T (V )
is automatically the universal enveloping algebra U(ñ−) of ñ−, the map n− 7→ n−(1) being the
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canonical embedding ñ− ↪→ U(ñ−). Hence n− = 0 and we obtain the triangular decomposition
of g̃(A), proving a). Moreover, by the Poincaré–Birkhoff–Witt theorem, ñ− is freely generated by
f1, . . . , fn. The statement c) is obvious. Now applying ω̃ we deduce that ñ+ is freely generated by
e1, . . . , en, proving b).

The relations make ei, fi weight vectors, adh acts diagonally, eigenvectors with distinct eigenval-
ues are independent. Thus we get the decomposition d). The bound on the weight space dimension
comes from the fact that each root space g̃α is generated by commutators of ht(α) simple genera-
tors. There are at most nht(α) such brackets, so dim g̃α ≤ nht(α).

To prove e), note that for any ideal i of g̃(A) one has (by the proposition to follow)

i =
⊕
α

(
g̃α ∩ i

)
.

Hence the sum of ideals which intersect h trivially, itself intersects h trivially, and the sum of all
ideals with this property is the unique maximal ideal r which intersects h trivially. In particular,
we obtain that (e) is a direct sum of vector spaces. But, clearly,

[fi, r ∩ ñ+] ⊂ ñ+.

Hence
[g̃(A), r ∩ ñ+] ⊂ r ∩ ñ+;

similarly,
[g̃(A), r ∩ ñ−] ⊂ r ∩ ñ−.

This shows that (e) is a direct sum of ideals.

Proposition 2.5. Let h be a commutative Lie algebra, V a diagonalizable h-module, i.e.

V =
⊕
λ∈h∗

Vλ, Vλ = {v ∈ V | h(v) = λ(h)v for all h ∈ h}. (4)

Then any submodule U of V is graded with respect to the gradation (4).

Proof. Any v ∈ V can be written in the form

v =
m∑
j=1

vj, vj ∈ Vλj ,

and there exists h ∈ h such that λj(h) (j = 1, . . . ,m) are distinct. We have for v ∈ U :

hk(v) =
m∑
j=1

λj(h)
kvj ∈ U (k = 0, 1, . . . ,m− 1).
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This is a system of linear equations with a nondegenerate matrix. Hence all vj lie in U . This also
shows that the sum in (4) is direct because if v = 0 then all hk(v) = 0 and we can apply the
invertible matrix to conclude that all vj = 0.

Given a complex n× n-matrix A, we can now define the main object of our study: the Lie algebra
g(A).

Definition 2.6 (Kac-Moody algebra). Let (h,Π,Π∨) be a realization of A and let g̃(A) be the Lie
algebra on generators ei, fi (i = 1, . . . , n) and h, and the defining relations (1.2.1). By Theorem
2.4 the natural map h→ g̃(A) is an embedding. Let r be the maximal ideal in g̃(A) which intersects
h trivially. We set:

g(A) = g̃(A)/r.

The matrix A is called the Cartan matrix of the Lie algebra g(A), and n is called the rank of g(A).
The Lie algebra g(A) whose Cartan matrix is a generalized Cartan matrix is called a Kac-Moody
algebra.

Remark 2.7 (Interpreting the maximal ideal which meets the Cartan subalgebra trivially). It is
true but not obvious that the maximal ideal r which meets the Cartan subalgebra h trivially is
generated by the so-called Serre relations:

For i ̸= j,
(ad ei)

1−aij(ej) = 0, (ad fi)
1−aij(fj) = 0,

where aij are entries of the Cartan matrix. These relations are what turn the free Lie algebras ñ±
into the correct nilpotent subalgebras.

The Serre relations can be understood from the representation theory of sl2. Inside g(A), consider
the subalgebra

sl2(i) = ⟨ei, fi, hi⟩ ∼= sl2.

For fixed i, every other generator ej or fj is a weight vector for this copy of sl2. The Cartan
matrix entry aij = ⟨αj, α∨

i ⟩ tells you the weight of ej relative to sl2(i). Thus, ej generates an
sl2(i)-submodule.

But in an sl2-representation, if a vector has weight m, then applying ei more than m times kills it.
This is exactly what the Serre relation enforces:

(ad ei)
1−aij(ej) = 0

is the statement that ej generates an sl2(i)-submodule of dimension (−aij) + 1.
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The quadruple (g(A), h,Π,Π∨) is called the quadruple associated to the matrix A. Two quadru-
ples (g(A), h,Π,Π∨) and (g(A1), h1,Π1,Π

∨
1 ) are called isomorphic if there exists a Lie algebra

isomorphism φ : g(A)→ g(A1) such that φ(h) = h1, φ(Π∨) = Π∨
1 and φ∗(Π1) = Π.

We keep the same notation for the images of ei, fi, h in g(A). The subalgebra h of g(A) is called
the Cartan subalgebra. The elements ei, fi (i = 1, . . . , n) are called the Chevalley generators.
In fact, they generate the derived subalgebra g′(A) = [g(A), g(A)]. Furthermore,

g(A) = g′(A) + h

with g(A) = g′(A) if and only if detA ̸= 0.

We set h′ =
∑n

i=1 Cα∨
i . Then g′(A) ∩ h = h′; g′(A) ∩ gα = gα if α ̸= 0.

It follows from (1.2.2) that we have the following root space decomposition with respect to h:

g(A) =
⊕
α∈Q

gα. (5)

Here,
gα = {x ∈ g(A) | [h, x] = α(h)x for all h ∈ h}

is the root space attached to α. Note that g0 = h. The number multα := dim gα is called the
multiplicity of α. Note that

multα ≤ n|htα| (6)

by Theorem 2.4 d).

An element α ∈ Q is called a root if α ̸= 0 and multα ̸= 0. A root α > 0 (resp. α < 0) is called
positive (resp. negative). It follows from the root space decomposition that every root is either
positive or negative. Denote by ∆, ∆+ and ∆− the sets of all roots, positive and negative roots
respectively. Then

∆ = ∆+ ∪̇∆− (a disjoint union).

Sometimes we will write ∆(A), Q(A), . . . in order to emphasize the dependence on A.

Let n+ (resp. n−) denote the subalgebra of g(A) generated by e1, . . . , en (resp. f1, . . . , fn). By
Theorem 2.4 e) and the definition of g(A), we have the triangular decomposition

g(A) = n− ⊕ h⊕ n+ (direct sum of vector spaces).

because the ideal r is graded and hence respects the triangular decomposition of g̃(A).

Note that gα ⊂ n+ if α > 0 and gα ⊂ n− if α < 0. In other words, for α > 0 (resp. α < 0), gα is
the linear span of the elements of the form

[. . . [[ei1 , ei2 ], ei3 ] . . . eis ] (resp. [. . . [[fi1 , fi2 ], fi3 ] . . . fis ]),
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such that αi1 + · · ·+ αis = α (resp. = −α). It follows immediately that

gαi
= Cei, g−αi

= Cfi, gsαi
= 0 if |s| > 1. (7)

because for example the 2αi root space is spanned by [ei, ei] = 0.

Since every root is either positive or negative, (7) implies the following important fact:

Lemma 2.8. If β ∈ ∆+ \ {αi}, then

(β + Zαi) ∩∆ ⊂ ∆+

Proof. Suppose β ̸= αi is positive, but β − qαi is negative for some q. Then the string must pass
through β − rαi = 0 or −αi at some step r ≤ q. But the only multiples of αi that are roots are
±αi. So the only way to hit a negative root is if the string actually reaches −αi. If β− rαi = −αi,
then β = (r − 1)αi. But β is a root and not equal to αi. The only possible multiples of αi that are
roots are ±αi. So β = (r − 1)αi is impossible unless β = αi.

Remark 2.9 (Finiteness of root strings). Using the interpretation of the Serre relations from the
representation theory of sl2, one sees that these root strings are in fact finite. Look at the subalge-
bra sl2(i) = ⟨ei, fi, hi⟩. For each root β, the root space gβ is a weight space of sl2(i) with weight
⟨β, α∨

i ⟩. Acting with ad ei and ad fi generates a finite-dimensional sl2-module, because the Serre
relations

(ad ei)
1−aij(ej) = 0, (ad fi)

1−aij(fj) = 0

kill sufficiently long strings.

Thus the αi-string through β has finite length.

Lemma 2.10. Let a ∈ n+ be such that [a, fi] = 0 for all i = 1, . . . , n. Then a = 0. Similarly, for
a ∈ n−, if [a, ei] = 0 for all i = 1, . . . , n, then a = 0.

Proof. Let a ∈ n+ be such that [a, g−1(1)] = 0. Then it is easy to see that∑
i,j≥0

(ad g1(1))
i(ad h)ja

is a subspace of n+ ⊂ g(A), which is invariant with respect to ad g1(1), ad h and ad g−1(1) (the
condition on a is used only in the last case). Hence if a ̸= 0, we obtain a nonzero ideal in g(A)
which intersects h trivially. This contradicts the definition of g(A).
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Remark 2.11. Sometimes it is useful to consider the Lie algebra g′(A) instead of g(A). Let
us give a more direct construction of g′(A). Denote by g̃′(A) the Lie algebra on generators
ei, fi, α

∨
i (i = 1, . . . , n) and defining relations

[ei, fj] = δijα
∨
i , [α∨

i , α
∨
j ] = 0, [α∨

i , ej] = aijej, [α∨
i , fj] = −aijfj.

Let Q be a free abelian group on generators α1, . . . , αn. Introduce a Q-gradation

g̃′(A) =
⊕
α

g̃′α

setting
deg ei = αi = − deg fi, degα∨

i = 0.

There exists a unique maximal Q-graded ideal r ⊂ g̃′(A) intersecting g̃′0 (=
∑

iCα∨
i ) trivially.

Then
g′(A) = g̃′(A)/r.

Note that this definition works for an infinite n as well.

Remark 2.12. In the presentation of g(A), you start with a Cartan subalgebra h large enough so
that you can realize the simple roots αi and simple coroots α∨

i as linear maps. In general,

dim h = 2n− rank(A).

So if A is singular (affine/indefinite type), then h strictly contains h′ = span{α∨
i }. In the presenta-

tion of g′(A), you only build in the “minimal Cartan” generated by the simple coroots:

h′ =
∑
i

Cα∨
i .

If A is invertible (finite type): then h = h′, so g(A) = g′(A). If A is singular (e.g. affine type):
then h has more dimensions than h′, and these extra directions give rise to central elements and
sometimes a degree derivation. In this case, g(A) = g′(A)⊕ (h/h′).

Proposition 2.13 (Center of a Kac-Moody algebra). The center of the Lie algebra g(A) or g′(A)
is equal to

c := {h ∈ h | ⟨αi, h⟩ = 0 for all i = 1, . . . , n}.
Furthermore, dim c = n− ℓ.

Proof. Let c lie in the center; write c =
∑

i ci with respect to the principal gradation. Then
[c, g−1(1)] = 0 implies [ci, g−1(1)] = 0 and hence, by Lemma 1.5, ci = 0 for i > 0. Similarly,
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ci = 0 for i < 0. Hence c ∈ h and [c, ei] = ⟨αi, c⟩ei = 0 implies that ⟨αi, c⟩ = 0 (i = 1, . . . , n).
Conversely, if c ∈ h and the latter condition holds, c commutes with all Chevalley generators and,
therefore, lies in the center. The simple roots α1, . . . , αn are linear functionals on h. They span a
subspace of h∗ of dimension ℓ = rank(A). Therefore, the common kernel

{h ∈ h : αi(h) = 0 ∀i}

has dimension n− ℓ.

Finally, c ⊂ h′ since in the contrary case, then there would exist some extra element c ∈ h \ h′
that is annihilated by every simple root. That would mean the simple roots {αi} vanish on a larger
subspace of h than expected, so they would not be linearly independent in h∗, contradicting the
axioms of a realization.

2.2 Invariant bilinear form

Definition 2.14. A Cartan matrix A is called symmetrizable if there exists a diagonal matrix
D = diag(d1, . . . , dn) with positive entries di such that DA is symmetric.

Let A be a symmetrizable matrix with a fixed decomposition and let (h,Π,Π∨) be a realization
of A. Fix a complementary subspace h′′ to h′ =

∑
Cα∨

i in h, and define a symmetric bilinear
C-valued form ( . | . ) on h by the following two equations:

(α∨
i | h) = ⟨αi, h⟩ϵi, for h ∈ h, i = 1, . . . , n (8)

(h′ | h′′) = 0, for h′, h′′ ∈ h′′ (9)

Since α∨
1 , . . . , α

∨
n are linearly independent and since

(α∨
i | α∨

j ) = bij ϵiϵj, (i, j = 1, . . . , n) (10)

there is no ambiguity in the definition of ( . | . ).

Lemma 2.15. Let g(A) be the Kac-Moody algebra associated to a symmetrizable matrix A. Then
the following holds:

1. The kernel of the restriction of the bilinear form ( . | . ) to h′ coincides with c.

2. The bilinear form ( . | . ) is nondegenerate on h.

Proof. (a) follows from Proposition 1.6. If now for all h ∈ h we have

0 =
( n∑
i=1

ciα
∨
i

∣∣∣h) =
〈 n∑

i=1

ciϵiαi, h
〉
,
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then
n∑
i=1

ciϵiαi = 0

and hence ci = 0, i = 1, . . . , n, proving (b).

Remark 2.16. If A is symmetric, you are in the “simply-laced” world (types A, D, E or untwisted
affine). If A is symmetrizable but not symmetric, you are in the “multiply-laced” world (types B,
C, F , G or twisted affine).

Every symmetrizable GCM gives rise to a Kac-Moody algebra that has:

• A symmetric, invariant bilinear form on g.

• A Weyl group that acts as isometries with respect to this form.

• A root system with well-behaved reflection geometry.

If A were not symmetrizable, these structures might not exist at all (the theory gets pathological).

Since the bilinear form ( . | . ) is nondegenerate, we have an isomorphism

ν : h → h∗

defined by
⟨ν(h), h1⟩ = (h | h1), h, h1 ∈ h,

and the induced bilinear form ( . | . ) on h∗.

We had defined the bilinear form on h by (α∨
i | h) = ⟨αi, h⟩ϵi for h ∈ h, so rewriting gives

ν(α∨
i ) = ϵiαi, i = 1, . . . , n. (11)

Now observe that (αi | αj) := (ν−1(αi) | ν−1(αj)). We know that ν(α∨
i ) = ϵiαi, so ν−1(αi) =

1
ϵi
α∨
i .

Therefore,

(αi | αj) =
(

1
ϵi
α∨
i

∣∣∣ 1
ϵj
α∨
j

)
=

1

ϵiϵj
(α∨

i | α∨
j )

=
1

ϵiϵj
(bijϵiϵj)

= bij.

where we invoke equation (8) in the last line.
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Theorem 2.17 (Invariant bilinear form on a symmetrizable Kac-Moody algebra). Let g(A) be a
symmetrizable Lie algebra. Since A is symmetrizable, fix a symmetrization A = DB as above.
Then there exists a nondegenerate symmetric bilinear C-valued form ( . | . ) on g(A) such that:

a) ( . | . ) is invariant, i.e.

([x, y] | z) = (x | [y, z]) for all x, y, z ∈ g(A).

b) ( . | . )|h is defined by (8) and (9) and is nondegenerate.

c) (gα | gβ) = 0 if α + β ̸= 0.

d) ( . | . )|gα⊕g−α is nondegenerate for α ̸= 0, and hence gα and g−α are nondegenerately paired
by ( . | . ).

e) [x, y] = (x | y) ν−1(α) for x ∈ gα, y ∈ g−α, α ∈ ∆.

Proof. Consider the principal Z-gradation

g(A) =
⊕
j∈Z

gj, g(N) =
N⊕

j=−N

gj for N = 0, 1, . . .

where gj is the subspace of roots of height j.

Define a bilinear symmetric form ( . | . ) on g(0) = h by (2.1.2) and (2.1.3) and extend it to g(1)
by

(ei | fj) = δijϵi (i, j = 1, . . . , n), (12)
(g0 | g±1) = 0, (g±1 | g±1) = 0. (13)

Then the form ( . | . ) on g(1) satisfies invariance as long as both [x, y] and [y, z] lie in g(1). Indeed
every bracket between ei, fj and h remains in g(1) and the only nontrivial check is

([ei, fj] | h) = (ei | [fj, h]) for h ∈ h,

or, equivalently,
δij(α

∨
i | h) = δijϵi⟨αj, h⟩,

which is indeed true.

Now we extend ( . | . ) to a bilinear form on the space g(N) by induction on N ≥ 1 so that
(gi | gj) = 0 if |i|, |j| ≤ N and i + j ̸= 0, and also condition a) is satisfied as long as both [x, y]
and [y, z] lie in g(N). Suppose this is already defined on g(N − 1); then we have only to define
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(x | y) for x ∈ g±N , y ∈ g∓N . We can write y =
∑

i[ui, vi], where ui and vi are homogeneous
elements of nonzero degree which lie in g(N − 1). Then [x, ui] ∈ g(N − 1) and we set

(x | y) =
∑
i

([x, ui] | vi).

To show that this is well defined, we prove that if i, j, s, t ∈ Z are such that |i|+ |j| = |s|+ |t| = N ,
i + j + s + t = 0, |i|, |j|, |s|, |t| < N and xi ∈ gi, xj ∈ gj , xs ∈ gs, xt ∈ gt, then we have (on
g(N − 1))

([[xi, xj], xs] | xt) = (xi | [[xj, xs], xt]).

To explain why this is what we need to check, fix x ∈ g±N . Define a bilinear map

βx :
⊕

p+q=∓N

gp ⊗ gq −→ C, βx(u⊗ v) := ([x, u] | v),

where u, v are homogeneous, |p|, |q| < N .

There is a bracket map

L :
⊕

p+q=∓N

gp ⊗ gq −→ g∓N , L(u⊗ v) = [u, v].

Our definition says (x | ·) on g∓N should be the linear functional that satisfies

(x | [u, v]) = βx(u⊗ v).

This is well defined iff βx vanishes on kerL; i.e. βx depends only on [u, v], not on the particular
decomposition. In particular, a choice of decomposition y =

∑
[ui, vi] corresponds to choosing a

preimage of y in V . If ỹ1, ỹ2 are two different preimages of the same y, then their difference lies in
the kernel of L: ỹ1 − ỹ2 ∈ kerL. So we need to show that βx vanishes on kerL. The kernel of L
is generated by elements of two types:

• u⊗ v + v ⊗ u (skew-symmetry)

• [u, v]⊗ w + [v, w]⊗ u+ [w, u]⊗ v (Jacobi)

We get skew symmetry from the invariance of the form on g(N − 1):

βx(u⊗ v) + βx(v ⊗ u) = ([x, u] | v) + ([x, v] | u)
= (x | [u, v]) + (x | [v, u]) = 0,

using invariance of the form on g(N − 1) (true by induction) and [v, u] = −[u, v]. So βx vanishes
on u⊗ v + v ⊗ u.
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To check Jacobi, consider homogeneous xi ∈ gi, xj ∈ gj , xs ∈ gs, xt ∈ gt with |i|+|j| = |s|+|t| = N ,
i+ j + s+ t = 0, and |i|, |j|, |s|, |t| < N . The identity quoted in the text,

([[xi, xj], xs] | xt) = (xi | [[xj, xs], xt]),

implies that βxi kills the Jacobi generator:

βxi([xj, xs]⊗ xt) + βxi([xs, xt]⊗ xj) + βxi([xt, xj]⊗ xs) = 0.

Indeed, if we had the identity, then we would have

βxi([xj, xs]⊗ xt) = ([xi, [xj, xs]] | xt) = (xi | [[xj, xs], xt]),
βxi([xs, xt]⊗ xj) = ([xi, [xs, xt]] | xj) = (xi | [[xs, xt], xj]),
βxi([xt, xj]⊗ xs) = ([xi, [xt, xj]] | xs) = (xi | [[xt, xj], xs]).

and adding these three equations gives

βxi(J) = (xi | [[xj, xs], xt] + [[xs, xt], xj] + [[xt, xj], xs] ) = (xi | 0) = 0,

Thus βx vanishes on the Jacobi-type tensors.

Now we check the identity using the invariance of ( . | . ) on g(N − 1) and the Lie algebra axioms,
we have

([[xi, xj], xs] | xt) = (([xi, xj], xs] | xt)− ([[xj, xs], xi] | xt)
= ([xi, xj] | [xs, xt]) + (xi | [[xj, xs], xt])
= (xi | [xs, [xj, xt]]) + ([xj, xs] | [xi, xt])
= (xi | [[xj, xs], xt]),

as required. So the identity holds, and hence βx vanishes on kerL. This shows that (x | y) is well
defined.

If now x =
∑

i[u
′
i, v

′
i], then by definition and by the relation above we have

(x | y) =
∑
i

([x, ui] | vi) =
∑
i

(u′
i | [v′i, y]).

Hence this is independent of the choice of the expressions for x and y.

It is clear from the definition that a) holds on g(N) whenever [x, y] and [y, z] lie in g(N). Hence
we have constructed a bilinear form ( . | . ) on g such that a) and b) hold. Its restriction to h is
nondegenerate by Lemma 2.15 b).

The form ( . | . ) satisfies c) since for h ∈ h, x ∈ gα and y ∈ gβ we have, by the invariance
property:

0 = ([h, x] | y) + (x | [h, y]) = (⟨α, h⟩+ ⟨β, h⟩)(x | y).
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For x ∈ gα, y ∈ g−α where α ∈ ∆, and h ∈ h, we have

([x, y]− (x | y)ν−1(α) | h) = (x | [y, h])− (x | y)⟨α, h⟩ = 0.

which combined with b) gives e).

It follows from b), c) and e) that the bilinear form ( . | . ) is symmetric. If d) fails, then by c) the
form ( . | . ) is degenerate. Let i = ker( . | . ) is an ideal by invariance, and by b) we have i∩h = 0,
which contradicts the definition of g(A). Therefore d) holds as well.

Suppose that A = (aij) is a symmetrizable generalized Cartan matrix. Fix a decomposition

A = diag(ϵ1, . . . , ϵn)(bij)
n
i,j=1

where ϵi are positive rational numbers and (bij) is a symmetric rational matrix.

Lemma 2.18. Such a decomposition always exists.

Proof. This is equivalent to a system of homogeneous linear equations and inequalities over Q
with unknowns ϵ−1

i and bij:

ϵ−1
i ̸= 0, diag(ϵ−1

1 , . . . , ϵ−1
n )A = (bij), bij = bji.

By definition, it has a solution over C. Hence, it has a solution over Q. We can assume that A is
indecomposable, meaning that A is not a direct sum of two smaller Cartan matrices. Then for any
1 < j ≤ n there exists a sequence

1 = i1 < i2 < · · · < ik−1 < ik = j

such that ais,is+1 < 0. We have:

ais,is+1ϵis+1 = ais+1,isϵis (s = 1, . . . , k − 1).

Hence ϵjϵ1 > 0 for all j because ais,is+1 and ais+1,is have the same sign.

Remark 2.19 (Dynkin diagram interpretation). Given a Cartan matrix, put an edge between two
indices if aij ̸= 0. Then A is indecomposable iff the graph is connected. Then it is obvious every
index j has a path to 1, and the above argument shows that all ϵj have the same sign as ϵ1. We can
then scale all ϵj by a constant to make them all positive.

From this we also deduce that if A is indecomposable, then the matrix diag(ϵ1, . . . , ϵn) is uniquely
determined up to a constant factor.
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Fix a nondegenerate bilinear symmetric form ( . | . ) associated to the decomposition above as
defined above. Recall that

(αi | αj) = bij =
aij
ϵi
.

so i = j gives (αi | αi) = 2ϵ−1
i > 0. If i ̸= j, then aij ≤ 0 and hence (αi | αj) ≤ 0. By

definition of ν (the identification h → h∗ using the form), we had ν(α∨
i ) = ϵiαi. Applying ν−1,

α∨
i = 1

ϵi
ν−1(αi). But we also know ϵi = (αi | αi)/2.

We deduce that:
(αi | αi) > 0 (i = 1, . . . , n),

(αi | αj) ≤ 0 (i ̸= j),

α∨
i =

2

(αi | αi)
ν−1(αi).

Hence we obtain the usual expression for the generalized Cartan matrix:

A =

(
2(αi | αj)
(αi | αi)

)n
i,j=1

.

We extend the bilinear form ( . | . ) from h to an invariant symmetric bilinear form on the entire
Kac–Moody algebra g(A). By Theorem 2.17 such a form exists and satisfies all the properties
stated there. It is an exercise to show that such a form is unique. The bilinear form ( . | . ) on the
Kac-Moody algebra g(A) provided by Theorem 2.17 and satisfying the above is called a standard
invariant form.

2.3 Generalized Casimir operator
Let g(A) be a Lie algebra associated to a matrix A, h the Cartan subalgebra, g =

⊕
α gα the root

space decomposition with respect to h. A g(A)-module (resp. g′(A)-module) V is called restricted
if for every v ∈ V , we have gα(v) = 0 for all but a finite number of positive roots α.

It is clear that every submodule or quotient of a restricted module is restricted, and that the direct
sum or tensor product of a finite number of restricted modules is also restricted. Examples of
restricted modules will be constructed later (see Exercise 2.9 and Chapter 9).

Assume now that A is symmetrizable and that ( . | . ) is a bilinear form provided by Theorem 2.17.

Given a restricted g(A)-module V , we introduce a linear operator Ω on the vector space V , called
the (generalized) Casimir operator, as follows.

First, introduce a linear function ρ ∈ h∗ by equations

⟨ρ, α∨
i ⟩ = 1

2
aii (i = 1, . . . , n).
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If detA = 0, this does not define ρ uniquely, and we pick any solution. It follows from (2.1.5) and
(2.1.6) that

(ρ | αi) = 1
2
(αi | αi), (i = 1, . . . , n).

Further, for each positive root α we choose a basis {e(i)α } of the space gα, and let {e(i)−α} be the dual
basis of g−α. We define an operator Ω0 on V by

Ω0 = 2
∑
α∈∆+

∑
i

e
(i)
−αe

(i)
α .

One could easily check that this is independent of the choice of bases. Since for each v ∈ V , only
a finite number of summands e(i)−αe

(i)
α (v) are nonzero, Ω0 is well defined on V .

Let u1, u2, . . . and u1, u2, . . . be dual bases of h. The generalized Casimir operator is defined by

Ω = 2ν−1(ρ) +
∑
i

uiui + Ω0.

Remark 2.20. The generalized Casimir operator Ω was introduced by Kac. The idea of its defini-
tion is borrowed from physics. We take the usual definition of the Casimir operator:

Ω =
∑
α>0

∑
i

(
e
(i)
−αe

(i)
α + e(i)α e

(i)
−α

)
+
∑
i

uiu
i,

we rewrite it by using commutation relations:

Ω =
∑
α>0

ν−1(α) + 2
∑
α>0

∑
i

e
(i)
−αe

(i)
α +

∑
i

uiu
i,

and then replace the first summand, which makes no sense, by a finite quantity 2ν−1(ρ).

We record the following simple formula:∑
i

⟨λ, ui⟩⟨µ, ui⟩ = (λ | µ),

which is clear from
λ =

∑
i

⟨λ, ui⟩ν(ui) =
∑
i

⟨λ, ui⟩ν(ui).

We make one more simple computation. For x ∈ gα one has[∑
i

uiui, x
]
=
∑
i

⟨α, ui⟩xui+
∑
i

ui⟨α, ui⟩x =
∑
i

⟨α, ui⟩⟨α, ui⟩x+x
(∑

i

ui⟨α, ui⟩+ui⟨α, ui⟩
)
.

Hence, we have [∑
i

uiui, x
]
= x

(
(α | α) + 2ν−1(α)

)
, x ∈ gα.
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