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Abstract

We describe an application of the Serre spectral sequence to the multiplicativity of the
Euler characteristic for Serre fibrations. Much of this material was taught to me by Yahya
Bashandy, whom I thank for many helpful discussions.
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1 Serre spectral sequence
Definition 1.1. A local coefficient system on a topological space X is a functor from the fundamental
groupoid of X to the category of abelian groups.

When X is path connected, the fundamental groupoid has one object up to equivalence and so
giving a local coefficient system is equivalent to a module over the group ring of π1(X).

Definition 1.2. A Serre fibration is a map of topological spaces p : E → B such that for any disk Dn

and any commutative diagram
Dn E

Dn × [0, 1] B

p

there exists a lift Dn × [0, 1] → E making the diagram commute.

This is equivalent to the homotopy lifting property for all CW complexes. Let Fb be the fiber over
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b ∈ B. The homotopy lifting property implies that all fibers are homotopy equivalent. Therefore
we say that F is the fiber of the fibration.

Proposition 1.3. Let p : E → B be a Serre fibration. Then the fibers Fb0 := p−1(b0) and Fb1 := p−1(b1)
are homotopy equivalent.

Proof. Given a point e0 ∈ E with p(e0) = b0 and a path γ in B starting at b0, the lifting property
gives you a lifted path γ̃e0 : [0, 1] → E such that p ◦ γ̃e0 = γ and γ̃e0(0) = e0. The endpoint γ̃e0(1)
lies in Fb1 .

So, each point e0 ∈ Fb0 gives a point in Fb1: Tγ(e0) := γ̃e0(1). This defines a map

Tγ : Fb0 −→ Fb1 ,

called transport along γ. Different choices of lift may give different maps Tγ , but the homotopy
lifting property again guarantees that any two such lifts are homotopic through maps of fibers. So
the induced map on fibers is well-defined up to homotopy.

Similarly, if γ and γ′ are homotopic as paths (fixing endpoints), then the resulting maps Tγ and Tγ′

are homotopic as well. This is because a homotopy of paths in B can itself be lifted to a homotopy
of fiber transport maps in E.

Now reverse the path: γ̄(t) = γ(1 − t). Lifting that gives a map Tγ̄ : Fb1 → Fb0 . The composi-
tions Tγ̄ ◦ Tγ and Tγ ◦ Tγ̄ are each homotopic to the identity — again by lifting the obvious path
homotopies (concatenating γ and γ̄ is homotopic to the constant path). Thus Tγ is a homotopy
equivalence between Fb0 and Fb1 .

Using this canonical homotopy equivalence between fibers, we can define a local coefficient system
Hn(F ) on B with value Hn(F ) for each n.

Definition 1.4. Given a loop γ based at b0, the transport map Tγ : Fb0 → Fb0 induces an automor-
phism of Hn(Fb0). Homotopic loops induce the same automorphism, so this defines a representation of
π1(B, b0) on Hn(Fb0).

This local coefficient system is called the homology local coefficient system associated to the fibration.

We are now ready to state the Serre spectral sequence. This is a tool for computing the (co)homology
of the total space of a fibration in terms of the (co)homology of the base and fiber. It was introduced
by Jean-Pierre Serre in his 1951 thesis.

Theorem 1.5 (Serre spectral sequence). Let F → E → B be a Serre fibration with B path connected.
Then there is a spectral sequence with

E2
p,q

∼= Hp(B;Hq(F )) =⇒ Hp+q(E).
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We will not prove this theorem here, but we will illustrate its use with an example. We will show
that the Euler characteristic is multiplicative for Serre fibrations with finite CW complex fiber and
base.

Let M be a CW complex with finite integral homology and let R be a principal ideal domain. Set

χ(M ;R) =
∑
i

(−1)i rkHi(M ;R)

χc(M ; k) =
∑
i

(−1)i rkH i(M ;R)

If k is a field, then χc(M ;Z) = χ(M ;Z) and χc(M ; k) = χ(M ; k). In the proof of the multiplica-
tivity of the Euler characteristic, we will use homology with coefficients in a finite field. But in
most situations, one wants to use homology with coefficients in Z. The miracle is that the Euler
characteristic is independent of the coefficient field.

Proposition 1.6. If k is a field, then χ(M ; k) = χ(M ;Z).

Proof. First suppose that F is a field of characteristic zero. Let bk be the kth Betti number of X ,
i.e.

Hk(X;Z) = Zbk ⊕ T

where T is the torsion subgroup. Then

χZ = b0 − b1 + b2 − · · · =
∑
k

(−1)kbk.

Now the universal coefficient theorem says

Hk(X;F) = Hk(X;Z)⊗ F ⊕ Tor
(
Hk−1(X;Z),F

)
.

where Tor is denotes TorZ1 . All the higher Tor groups vanish since Z has global dimension 1. It is
a PID and so all modules have projective dimension at most 1. Since the field is of characteristic
zero, the Tor term vanishes, and you’re left with

Hk(X;F) = Fbk .

It follows that χF = χZ.

Suppose now that F is a field of characteristic p. Suppose also that

Hk(X;Z) = Zbk ⊕ (Z/pZ)c
p
k ⊕ T p

k ,
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where T p
k is the torsion part which is not p-torsion. The universal coefficient theorem gives:

Hk(X;F) =


F b0+cp0 , k = 0

F bk+cpk+cpk−1 1 ≤ k ≤ n,

F cpn , k = n+ 1

This calculation follows from the fact that

Tor(Hk−1(X;Z),F) ∼= Tor((Z/pZ)c
p
k−1 ,F)⊕ Tor(Tk−1,F)⊕ Tor(Zbk−1 ,F) ∼= F cpk−1

To calculate these Tor groups, we use the general fact that for any abelian group A,

Tor(Z/mZ, A) ∼= {x ∈ A : mx = 0}

This fact follows from taking a projective resolution of Z/mZ:

0 → Z m−→ Z → Z/mZ → 0

and tensoring with A. When you do this, we get the complex

0 → A
m−→ A → 0

whose first homology is exactly {x ∈ A : mx = 0}. Note that the zeroth homology is the cokernel
of the map A

m−→ A, which is A/mA which agrees with the tensor product Z/mZ ⊗ A. Thus we
see that

Tor(Tk−1,F) = 0

Tor(Zbk−1 ,F) = 0

because Tk−1 has no p-torsion and Z is torsion-free. Then the Euler characteristic becomes

χF = (b0 + cp0)− (b1 + cp1 + cp0) + · · ·+ (−1)n(bn + cpn + cpn−1) + (−1)n+1cpn. = χZ

as desired.

The following proposition follows from the fact that for a short exact sequence of finitely generated
modules over a principal ideal domain, the rank is additive.

Proposition 1.7. Let R be a principal ideal domain and let C• be a bounded chain complex of finitely
generated R-modules. Then χ(C•) = χ(H•(C•)).
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2 Multiplicativity of the Euler characteristic
From now on, set k = F2 and χ(M) = χ(M ;F2), H∗(M) = H∗(M ;F2). We want to prove that
χ(E) = χ(B)χ(F ) for a Serre fibration F → E → B, where F is a path-connected finite CW
complex, B is a path-connected finite CW complex, and E is a finite CW complex.

Proposition 2.1. Assuming the conditions above, χ(E) = χ(B)χ(F ) for a Serre fibration F → E → B.

Proof. First we will pass to a finite index subgroup of π1(B) for which the monodromy action on
H∗(F ) is trivial. Then we will use the Serre spectral sequence to compute χ(E).

Since k is finite and B is a finite CW complex, H∗(B; k) is a finite set. So the image of

π1(B) → Aut(H∗(F ))

is finite, whose kernel has finite index d. There exists a d-sheeted covering B̃ → B with this
kernel as fundamental group. Since B is locally path-connected, the base change Ẽ → E is also
a d-sheeted covering. Moreover, the base change of any Serre fibration is a Serre fibration, so we
have a Serre fibration F̃ → Ẽ → B̃.

The monodromy action
π1(B̃, b̃) → Aut(H∗(F̃ ))

is the composition
π1(B̃, b̃) ↪→ π1(B, b) → Aut(H∗(F ))

with the last map given by the homeomorphism h̃ 7→ h. It follows that the action of π1(B̃, b̃) on
H∗(F̃ ) is trivial. Now, because E and B are finite CW complexes, Ẽ and B̃ are also finite CW
complexes with χ(B̃) = dχ(B) and χ(Ẽ) = dχ(E) (since coverings multiply χ by d).

Thus it suffices to show χ(Ẽ) = χ(B̃)χ(F̃ ), and since π1(B̃) acts trivially on H∗(F̃ ), we may
assume from now on that π1(B) acts trivially on H∗(F ).

Let Ep,q
r be the rth page of the Serre spectral sequence. For each r ∈ Z≥2 ∪ {∞}, define

V r
n =

⊕
p+q=n

Ep,q
r .

Then we have the exact sequence

· · · → V r
n+1

dr−→ V r
n

dr−→ V r
n−1 → · · ·

where dr =
⊕

p+q=n d
p,q
r .

Since π1(B) acts trivially, we have

Ep,q
2 = Hp(B,Hq(F )) ∼= Hp(B)⊗k Hq(F ),
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and since B,F are finite CW complexes, Ep,q
2 = 0 for p + q > dimB + dimF . Thus each V r

n is
finite-dimensional, and the complex (V r

∗ , dr) is bounded.

By the rank formula,

χ(V r
∗ ) = χ(H∗(V

r
∗ , dr)) =

∑
n

(−1)n dimHn(V
r
∗ ) =

∑
n

(−1)n
∑

p+q=n

dimEp,q
r .

But the spectral sequence satisfies χ(Ep,q
r ) = χ(Ep,q

r+1), so χ(Er) = χ(Er+1) for all r, and hence

χ(E∗,∗
∞ ) = χ(E∗,∗

2 ).

We have a formula for χ(E∗,∗
2 ):

χ(E∗,∗
2 ) =

∑
n

(−1)n
∑

p+q=n

dimEp,q
2

=
∑
n

(−1)n
∑

p+q=n

dimHp(B)⊗Hq(F )

=
∑
n

(−1)n
∑

p+q=n

dimHp(B) dimHq(F )

=
(∑

p

(−1)p dimHp(B)
)(∑

q

(−1)q dimHq(F )
)

= χ(B)χ(F ).

Finally, since Ep,q
∞ gives a filtration of Hp+q(E) with

dimHn(E) =
∑
p

dimEp,n−p
∞ ,

we obtain

χ(E) =
∑
n

(−1)n dimHn(E) =
∑
n,p

(−1)n dimEp,n−p
∞ = χ(E∗,∗

∞ ) = χ(E∗,∗
2 ) = χ(B)χ(F ).

as desired.
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