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Abstract

The decomposition theorem for perverse sheaves is a fundamental result in al-
gebraic geometry and topology. It provides a powerful structural description of the
derived pushforward of the intersection complex under a proper map of algebraic
varieties. Specifically, it states that the derived pushforward decomposes into a
direct sum of shifted semisimple perverse sheaves. This result has profound impli-
cations for the study of singular spaces, as it generalizes classical theorems like the
Hard Lefschetz theorem and the Hodge decomposition to singular varieties.
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1 Classical

We want to understand the decomposition theorem for perverse sheaves. The classical
precursors to this theorem include the theorems of Lefschetz, Hodge, Deligne, and the
invariant cycle theorems. We discuss them here below. Let X be a smooth projective
variety over C and let D = X ∩H be the intersection of X with a generic hyperplane.

1.1 Gysin maps

The discussion of the Lefschetz hyperplane theorem is based on [1]. In general, suppose
we have i : X → Y the inclusion of a closed submanifold into a smooth manifold and we
have an orientation of the normal bundle NX/Y .

Then we have the Gysin map i∗ : H∗(X) → H∗+d(Y ) where d is the codimension of X in
Y . The map of pairs (Y, ∅) → (Y, Y \X) ∼= ThX NX/Y induces a map

i∗ : H∗(X) → H∗+d(ThX NX/Y ) → H∗+d(Y )

where the first map is the Thom isomorphism. Recall that the Thom space of a vector
bundle E is disk bundle D(E) of E with the boundary sphere bundle S(E) collapsed to
a point. The Thom isomorphism is the map H∗(E) → H∗+d(ThE) given by cupping
with the Thom class. The Thom class u ∈ Hd(E,E\0) makes H∗(E,E\0) into a free
H∗(E)-module.
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There is also the push-pull formula which says that the map
i∗i∗ : H∗(X) → H∗+d(X)

is equal to
i∗i∗ = cd(NX/Y )∪ = [X]|X∪

In particular, an ample line bundle L on X gives a divisor D in X and the Gysin map
for the divisor i : D → X is given by i∗ = c1(L)∪ = [D]∪. The pull-push formula for
i∗i

∗ : H∗(Y ) → H∗+d(Y ) is similarly given by i∗i∗ = cd(NX/Y )∪ = [D]∪.

Remark 1.1. The intuition behind this map is, given a class α ∈ H i(X) represented
by a submanifold Z, we are embedding Z in the normal bundle NX/Y via the zero section,
and capping with Chern classes is about looking at the homology class of the intersection
of the embedded Z with general sections of NX/Y .

The Gysin maps satisfy very special properties when we have smooth projective varieties.

Theorem 1.2 (Lefschetz hyperplane theorem). The restriction map H i(X) → H i(D)
is an isomorphism for i < n− 1 and injective for i = n− 1.

Theorem 1.3 (Hard Lefschetz). The i-fold product ∪c1(L)i : Hj−i(X) → Hj+i(X) is
an isomorphism for j < n− 2i and injective for j = n− 2i.

Remark 1.4. Hyperplane line bunldes are positive are ample and satisfy Hard Lefschetz.

1.2 Hodge theory

The cohomology of a smooth projective variety X is very special compared to that of
general manifolds. In particular H∗(X) has a Hodge structure which we will state some
of the consequences of here.

We consider complex valued i-forms on X with p holomorphic coordinates and q anti-
holomorphic coordinates. There are differential operators

∂ : Ωp,q(X) → Ωp+1,q(X)
∂̄ : Ωp,q(X) → Ωp,q+1(X)

which satisfy ∂2 = 0 and ∂̄2 = 0 and ∂∂̄ + ∂̄∂ = 0. There is the Hodge decomposition
H i(X,C) =

⊕
p+q=i

Hp,q(X)

where
Hp,q(X) = ker ∂̄/ im ∂̄

is the Dolbeault cohomology. There is also the Dolbeault isomorphism
Hp,q(X) ∼= Hq(X,Ωp)

where Ωp is the sheaf of holomorphic p-forms on X.
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1.3 Proof of the Lefschetz hyperplane theorem

We follow the proof of the Lefschetz hyperplane theorem in [1]. I have to rename some
things. Let M be a smooth projective variety of dimension n and let V be a hyperplane
section in M , i.e. a positive line bundle. There are short exact sequences of sheaves

0 → Ωp
M(−V ) → Ωp

M
r−→ Ωp

M |V → 0
0 → Ωp−1

V (−V ) → Ωp
M |V

i−→ Ωp
V → 0

It is enough to show that

Hq(Ωp
M) ∼= Hq(Ωp

V )

when p+ q < n− 1 and that the map

Hq(M,Ωp
M) r∗

−→ Hq(M,Ωp
M |V ) → Hq(V,Ωp

M |V ) i∗−→ Hq(V,Ωp
V )

is injective when p+ q = n− 1.

Proof. Look at the long exact sequence in cohomology associated to the short exact
sequence of sheaves. The desired properties are equivalent to the vanishing of the coho-
mology groups Hq(Ωp

M(−V )) and Hq(Ωp−1
V (−V )) for p + q ≤ n. This follows from the

Kodaira vanishing theorem.

Theorem 1.5 (Kodaira vanishing theorem). Let L be a positive line bundle on a smooth
projective variety M . Then Hq(M,Ωp

M(L)) = 0 for p+ q ≥ n. The dual statement is

Hq(M,Ωp
M(−L)) = 0

for p+ q ≤ n.

Remark 1.6. The definition of positive line bundle and the Kodaira vanishing theorem
will be black-boxed.

2 Sheaves and derived categories

This section is also based on [2].

2.1 Derived category

On a space X, we consider the category where the objects are complexes of sheaves on
X and the morphisms are morphisms of complexes. There are quasi-isomorphisms of
complexes which are those which induce isomorphisms on cohomology sheaves.

The derived category D(X) is obtained by inverting quasi-isomorphisms (this is not
precise!). Different complexes of sheaves which give the same cohomology theories are
identified in D(X). Given a complex of sheaves K, one can produce an injective resolution
K → I where I is a complex of sheaves with injective components and K → I is a quasi-
isomorphism.
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Definition 2.1. The cohomology groups H i(K) of K are defined as the cohomology
of the complex Γ(X, I). Beware that these are different than the cohomology sheaves,
which are the "cohomology objects" in D(X).

More generally, the derived category is important because it admits derived functors. A
map f : X → Y of spaces induces a map f∗ : D(X) → D(Y ) of derived categories. Given
a bounded below complex of sheaves K on X, choose an injective resolution K → I. The
pushforward complex f∗I is a complex of sheaves on Y so that

H i(U, f∗I) ∼= H i(f−1(U), I)

and is well defined up to canonical isomorphism in D+(Y ), denoted Rf∗K.

Remark 2.2. When f : X → ∗ is a map to a point, the derived pushforward Rf∗K
sends K to the cohomology of K.

2.2 Constructible sheaves

Definition 2.3. A subset V ⊂ Z of a complex variety is constructible if it is a finite
sequence of unions, intersections, or complements of algebraic subvarieties of Z.

A local system on Z is a locally constant sheaf with finite-dimensional stalks.

A complex of sheaves K on Z is constructible if Z has a decomposition into constructible
subsets Z = ⊔

Zi such that each of the cohomology sheaves Hi(K|Zi
) is a local system.

The constructible bounded derived category DZ is defined to be the full subcategory
of the bounded derived category Db(Z) whose objects are the constructible complexes.

A perverse sheaf is a constructible complex with certain restrictions on the dimension
of the support of its stalk cohomology and of its stalk cohomology with compact supports.
These restrictions are called the support and co-support conditions, respectively.

Remark 2.4. These definitions are right because we get a category in which we have
very many nice properties, in particular Verdier duality, six-functor formalism, etc.

In the derived category, we can embed sheaves as complexes concentrated in degree
zero, and the image of this embedding is characterized by the property that Hi(K) = 0
for i ̸= 0. Every constructible complex K comes with a canonical collection of perverse
sheaves called the perverse cohomology sheaves pHi(K) of K which are characterized
among the constructible complexes by pHi(K) = 0 for every i ̸= 0.

2.3 Intersection complex

Perverse sheaves are interesting objects besides their role in developing intersection co-
homology. The intersection complex is a fundamental example of a perverse sheaf, in the
sense that every perverse sheaf is a finite iterated extension of intersection complexes.
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Definition 2.5. Given a complex algebraic variety Y and a local system L defined on
a smooth open subset U ⊂ Y , the intersection complex ICY (L) is a constructible
complex of sheaves, unique up to canonical isomorphism in DY so that IC(L)|U = L and
the support and cosupport conditions hold:

dim{y ∈ Y | Hi
y(IC(L)) ̸= 0} < −i if i > −n

dim{y ∈ Y | Hi
c,y(IC(L)) ̸= 0} < i if i < n

where the c denotes compactly-supported cohomology stalks. The intersection cohomology
of Y with coefficients in L is defined to be the cohomology of the complex ICY (L) up to a
shift:

IH i+n(Y, L) := Hi(ICY (L))

2.4 Intersection complex of the link of an affine cone

Recall that a complex projective manifold has hard Lefschetz.

Definition 2.6. The primitive cohomology is

P n−k(X) = ker ∪ck+1
1 : Hn−k(X) → Hn+k+2(X)

It is precisely which classes die after you cup too one many times with the hyperplane
class. There is the Lefschetz decomposition

HmX =
∑
k

LkP n−2k

Hard Lefschetz says that there is a map sl2 → EndH∗(X) where L acts as a lowering
operator for the sl2 action, H acts on Hn−i(X) by weight i, and there is a raising operator
given by the restriction to the harmonic forms of the the formal adjoint of ω ∧ ·. In this
setup, the primitive vectors are precisely the highest weight vectors.

Another way to think about it is as follows: the primitive cohomology in dimension
n− k is the classes corresponding to submanifolds of dimension n+ k which have empty
intersection with k+1 generic hyperplanes. These are precisely classes which do not meet
some n− k − 1-dimensional linear subspace of CPn. When k = 0, this is precisely those
n-dimensional submanifolds which live in the Cn part of CPn.

Given a smooth projective manifold En−1 ⊂ CPN take its affine cone Y n ⊂ CN+1 and
consider L the link of the cone, defined as the intersection of Y with a small sphere
centered at the cone point. The link L is a smooth oriented compact manifold of real
dimension 2n− 1 and S1-fibers over E.

Its cohomology is equal to

Hj(L) = P j(E) for j ≤ n− 1
Hn−1+j(L) = P n−j(E) for 0 ≤ j ≤ n



3 DECOMPOSITION THEOREM 7

The intersection cohomology groups equal

IHj(L) = P j(E) for j ≤ n− 1
IHj(L) = 0 for j > n− 1

With compact supports:

IH2n−j
c (L) = Hj(L) for 0 ≤ j ≤ n− 1

IHn−j
c (L) = 0 for j > n− 1

Poincare duality is the isomorphism

IHj(L) ∼= IH2n−j
c (L)

Remark 2.7. A major motivation behind the introduction of intersection cohomology
is the failure of Poincare duality for singular spaces. Note that in this example the link
is smooth, so we have Poincare duality.

3 Decomposition Theorem

The decomposition theorem for perverse sheaves is a very important result and compu-
tational tool. First we state it and then we do some examples.

Theorem 3.1 (Decomposition Theorem). Let f : X → Y be a proper map of complex
algebraic varieties. Then there is an isomorphism in the constructible bounded derived
category DY

Rf∗ ICX
∼=

p⊕
i∈Z

Hi(Rf∗ ICX)[i]

where the sum is finite and the summands are the perverse cohomology sheaves. The
perverse sheaves are semisimple:

pHi(Rf∗ ICX) =
⊕
β

ICS̄β
(Lβ)

where Lβ are local systems on the smooth open sets Sβ ⊂ Y . In other words, there is a
"essentially unique" decomposition into triples (Ya, La, da) so that

Rf∗ ICX
∼=

⊕
a

ICȲa
(La)[dimX − dim Ya − da]

where

1. Ya are locally closed, smooth, irreducible subvarieties

2. La are local systems on Ya

3. da are integers
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Example 3.2. Let Y be the projective cone over a Riemann surface Σ of genus g. The
Betti numbers of Y are 1, 0, 1, 2g, 1 and the IH Betti numbers are 1, 2g, 1, 2g, 1.

Blowing up Y at the vertex X → Y and we can apply the decomposition theorem to the
proper map X → Y . The decomposition theorem says that

0 → ICY → f∗QX [2] → H2(Σ)[0] → 0

4 First look at perverse sheaves

Let K ∈ DY be a constructible complex on the variety Y . Recall that this means K has
cohomology sheaves which are all constructible. Recall that the support of a sheaf is
the closure of the set of points with nontrivial stalks.

Definition 4.1. We say K satisfies the support condition if the support of the co-
homology sheaves

dim Supp H−i(K) ≤ i for all i ∈ Z

has the right dimension. We say K satisfies the cosupport condition if the support of
the compactly supported cohomology sheaves

dim Supp Hi
c(K) ≤ i for all i ∈ Z

has the right dimension.

We say K is perverse if it satisfies both the support and cosupport conditions. The
cateogry of perverse sheaves is denoted PY and is a full subcategory of the constructible
bounded derived category DY .

Remark 4.2. What do perverse sheaves in the context of spaces which are not algebraic
varieties look like? This is largely an aside toward what perverse sheaves and knot contact
homology.

Example 4.3. Let C be a Riemann surface of genus g and consider the map P1×C → X
which collapses 0 ×C to a point. Then this map is semismall but nonalgebraic, in partic-
ular the decomposition theorem does not hold, but the pushforward f∗QP1×C is a perverse
sheaf.

4.1 Perverse sheaves and decomposition theorem for toric varieties

A polytope P is simplicial if all its faces are simplices. Given a simplicial polytope, the
toric variety XP who has moment polytope equal to the dual of P is smooth. Under this
correpsondence, subdivisions of P (defined as a collection K of polytopes whose union is
the boundary of P and the intersection of any two elements in K is in K) correspond to
subdivisions of the fan of XP correspond to corner chops of the dual of P . In particular,
any subdivision P̃ of P gives rise to a proper equivariant birational map XP̃ → XP . One
can then apply the decomposition theorem to this map.
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Given a fan one constructs a convex polytope P by intersecting the fan with a ball
centered at the origin and then flattening the faces. If the moment polytope is simple,
then the fan polytope is simplicial.

Definition 4.4. Given a simplicial polytope P , there is a face vector (f0, f1, · · · , fd)
where fi is the number of i-dimensional faces of P . Consider the h-polynomial

hP (t) = (t− 1)d + f0(t− 1)d−1 + f1(t− 1)d−2 + · · · + fd−1(t− 1) + fd

−
∑

hi(P )ti

and the g-polynomial

gP (t) = h0 + (h1 − h0)t+ (h2 − h1)t2 + · · · + (hd − hd−1)td

=
∑

gi(P )ti

where hi(P ) and gi(P ) are the coefficients of the h-polynomial and g-polynomial.

Proposition 4.5. The coefficient hi computes the Betti number b2i of the toric variety
XP .

Proposition 4.6. The coefficient gl equal to the dimension of the primitive cohomology
in degree 2l.

The proof of these statements and their generalizations to intersection cohomology can
be found in [3]. Poincare duality and Hard Lefschetz therefore become statements about
the face vector of a simplicial polytope P .

When the polytope is not simplicial, the toric variety is singular and therefore we expect
interesting statements about the intersection cohomology of the toric variety in terms of
the combinatorics of the polytope. Indeed the following is true.

Definition 4.7. If P is a polytope of dimension d and h, g have been defined for all
polytopes of dimension < d, we define

hP (t) =
∑
F<P

g(F, t)(t− 1)d−1−dimF

where F is a proper face, including the empty face ∅ for which g(∅, t) = h(∅, t) = 1 and
dim ∅ = −1. g is defined from h as before.

Proposition 4.8. The coefficients of these polynomials compute the intersection coho-
mology and the primitive intersection cohomology of the toric variety XP .

Remark 4.9. There are a bunch of interesting calculations in the text that I don’t have
the details for. In particular they claim that if you take the cube and subdivide it along
barycenters of all the faces, let f be the corresponding map, then we have

pH±1(f∗QXcube)[3] =
∑

Qpi
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4.2 Semismall maps

In the case of semismall maps the decomposition theorem takes a particularly simple
form. An important example of a semismall map is the resolution of the nilpotent cone
(Springer resolution stuff)

Definition 4.10. A stratification for f : X → Y is a decomposition of Y into locally
closed smooth subsets so that f−1(Yi) → Y is topologically locally trivial fibration.

The relationship to perverse sheaves is immediate.

Proposition 4.11. If X smooth connected variety of dimension n and f : X → Y
proper surjective map of varieties. Say Y has a stratification Y = ⊔

Yi and let yi ∈ Yi,
di = dim f−1(Yi) − dim Yi. Then the following are equivalent

• f∗QX is a perverse sheaf

• dimX ×Y X ≤ n

• dim Yi + 2di ≤ n for all i

A map which satisfies these conditions is called semismall. A stratum is relevant if
equality holds in the third condiiton.

In other words, if the map has been stratified, then for each stratum S ⊂ Y the dimension
of the fiber over S is at most 1

2 codimS, and it is small if the inequality is strict.

Proposition 4.12. If π : X → Y is small, then the intersection cohomology of Y is
canonically isomorphic to the cohomology of X.

5 Perverse sheaves in representation theory

The language of perverse sheaves and D-modules are critical in modern methods of geo-
metric representation theory. For example, applications of perverse sheaf methods played
an essential role in the proof of the Kazhdan-Lusztig conjecture by Beilinson-Bernstein
and Brylinski-Kashiwara, Lusztig’s construction of canonical bases in quantum groups,
and the work of Beilinson-Drinfeld on the Geometric Langlands conjecture. Historically,
these tools have also proved very effective in the study of a central object in geometric
representation theory called the affine Grassmannian.
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5.1 Springer correspondence

5.1.1 Springer resolution

The Springer correspondence is a way of realizing the irreducible representations of the
Weyl group in a geometric way. In particular Springer realizes the group algebra

Q[W ] ∼= HBM
2 dim ÑÑ ×N Ñ

where the right hand side has a canonical basis given by the irreducible components.

Let G/B be the flag variety for a connected reductive algebraic group. The Lie algebras
are g and b. If x ∈ G and xBx−1 = B then x ∈ B and so we can identify G/B with the
set of subgroups of G which are conjugate to B, or equivalently the set of all subalgebras
of g that are conjugate to b, that is the variety of all Borel subalgebras of g.

Let N ⊂ g be the cone of nilpotent elements and let

Ñ = {(x, b) ∈ N ×G/B | x ∈ b}

Lemma 5.1. The projection Ñ → G/B gives an isomorphism of bundles Ñ ∼= T ∗G/B

Proof. The tangent space to G/B at the identity is g/b so its dual space is

T ∗
I (G/B) = {ϕ : g → C | ϕ(b) = 0}

The Killing form g× g → C given by x, y 7→ tr(adx ◦ ad y) is nondegenerate and we pair
g with g∗ to get

T ∗
I (G/B) = {x ∈ g | ⟨x, b⟩ = 0} = n

is the nilradical of b. So for each Borel subgroup A ⊂ G, the cotangent space T ∗
A(G/B)

is the nilradical of Lie(A), is exactly the fiber of Ñ over A.

The Springer resolution is the map π : Ñ → N given by projection. Therefore Ñ
carries a natural holomorphic symplectic form (i.e. a 2,0 form) and the Springer resolution
map is semismall. One constructs an action of W on π∗QÑ [dim Ñ ] and then extends it
to an algebra homomorphism Q[W ] → EndDN (π∗QÑ [dim Ñ ]) which is isomorphic to the
desired BM homology group. To construct the initial action, one observes that there is a
special W -fibration and then one pushes this action of W on the fiber around.

There is the Chevalley map q : g → t/W which sends a matrix to the roots of its
characterstic polynomial. Consider trs the regular semisimple elements of t, obtained by
ripping out the root hyperplanes, and consider a dominant chamber trs/W . Consider
grs = q−1(trs/W ) and

g̃ = {(x, b) ∈ g ×G/B | x ∈ b}
g̃rs = π−1(grs)

Then the map g̃rs → grs is a W -fibration and the map g̃ → g is small. Associated to the
W -covering is a local system

L = π′
∗Qg̃rs
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where π′ is the restriction of π to g̃rs. Then they extend to an action of W on intersection
cohomology and pushforward perverse sheaves along the small map.

Remark 5.2. The image of the root hyperplanes is the discriminant variety of all poly-
nomials with multiple roots. The complement of the union of root hyperplanes is the
configuration space of n ordered points in C with π1 = the colored braid group
The complement of the image is the configuration space on n unordered points and has
π1 = braid group.

5.1.2 Algebra of correspondences

There is a general construction described in [4] which he advertises as a method of ge-
ometrically constructing representations of finite dimensional algebras. The idea is to
introduce the convolution product on Borel Moore homology, which is supposed to gen-
eralize the convolution of functions.

Definition 5.3. Let M1,M2,M3 connected oriented smooth and Z12 ⊂ M1 × M2 and
Z23 ⊂ M2 ×M3 be closed subsets. The composition of Z12 and Z23 is the set

Z12 ◦ Z23 = {(x1, x3) ∈ M1 ×M3 | ∃x2 ∈ M2 s.t. (x1, x2) ∈ Z12 and (x2, x3) ∈ Z23}

The convolution in Borel-Moore homology generalizes this to cycles and is defined
as follows:

HBM
i (Z12) ×HBM

j (Z23) → HBM
i+j (Z12 ◦ Z23)c1, c2 7→ c1 ∗ c2

where

c1 ∗ c2 := π13∗(π∗
12c1 ∩ π∗

23c2)

The convolution product is associative. Now let µ : M → N a proper map of complex
varieties and consider M1 = M2 = M3 = M and Z = Z12 = Z23 = M ×N M . Then we
get convolution maps

HBM
∗ (Z) ×HBM

∗ (Z) → HBM
∗ (Z)

The convolution product is not graded, but it does preserve the middle dimension. If
dimCM = n then the convolution product

HBM
2n (Z) ×HBM

2n (Z) → HBM
2n (Z)

and we call this middle dimensional subalgebra H(Z).

5.1.3 Sheaf theory applied to the convolution algebra

The convolution product makes HBM
∗ (Z) into an algebra. It turns out that we can express

the algebra structure as the Ext algebra of a particular generator. Let CM be the constant
perverse sheaf on M i.e. CM = CM [dimM ] extended along irreducible components.
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Proposition 5.4. There is a (not necessarily grading preserving) natural algebra iso-
morphism

HBM
∗ (Z) → Ext∗

DbN(µ∗CM , µ∗CM)

Assume that µ : M → N is productive and that N is stratified so that the restriction
maps are all locally trivial topological fibrations. We can study the convolution algebra by
analyzing the pushforward µ∗CM of the constant sheaf on M . Applying the decomposition
theorem we find that

HBM
∗ (Z) ∼=

⊕
k∈Z

ExtkDbN(µ∗CM , µ∗CM)

=
⊕

i,j,k∈Z,ϕ,ψ
HomC(Lϕ(i), Lψ(j)) ⊗ ExtkDbN(ICϕ[i], ICψ[j])

=
⊕

i,j,k∈Z,ϕ,ψ
HomC(Lϕ(i), Lψ(j)) ⊗ ExtkDbN(ICϕ, ICψ) reindexing

where Lψ is the multiplicity space of the decomposition of µ∗CM into irreducible IC
sheaves. It is a fact that ExtkDbN(ICϕ, ICψ) vanishes if k < 0. Also Hom(ICϕ, ICψ) is
nonzero only if ϕ = ψ. Therefore we find that

HBM
∗ (Z) ∼=

⊕
ϕ

EndC(Lϕ) ⊕
( ⊕
k>0,ϕ,ψ

HomC Lϕ, Lψ ⊗ ExtkDbN(ICϕ, ICψ)
)

The first summand is semisimple and the second HBM
∗ (Z)+ is nilpotent because it is

concentrated in degrees k > 0. Moreover, this nilpotent ideal is the radical of our algebra
because

HBM
∗ (Z)/HBM

∗ (Z)+ =
⊕
ϕ

EndC(Lϕ)

is semisimple. The composition

HBM
∗ (Z) → HBM

∗ (Z)/HBM
∗ (Z)+ ∼=

⊕
ϕ

EndC(Lϕ) ↠ EndC(Lϕ)

yields an irreducible representation of the algebra HBM
∗ (Z) on the vector space Lψ.

Theorem 5.5. The nonzero members of the collection {Lϕ} are the irreducible repre-
sentations of the algebra HBM

∗ (Z).

5.1.4 Semi-small maps

When µ is semismall then the previous calculation becomes nicer since the shifts go away.
In particular, we have the following:

Theorem 5.6. 1. Let CM be the constant perverse sheaf on M . If µ is semismall
then µ∗CM is a perverse sheaf and we have a decomposition without shifts

µ∗CM =
⊕
Nϕ,χϕ

Lϕ ⊗ ICϕ
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where ϕ = (Nϕ, χϕ) is a pair of a stratum a local system on the stratum. Further-
more, H(Z) is a subalgebra of HBM

∗ (Z) and

H(Z) ∼=
⊕
ϕ

EndC(Lϕ)

2. Let H(Mx) denote the top Borel-Moore homology of the fiber µ−1(x). For any stra-
tum Nα, x 7→ H(Mx) is a local system on Nα. If x ∈ Nϕ, χϕ then the corresponding
multiplicity space is given by the isotopy invariants of the top cohomology of the
fiber.

Lϕ = H(Mx)π1(Nα,x)

5.1.5 Applying the machinery to the Springer resolution

In this section we explain the following setup and theorem. Set Z = Ñ ×N Ñ the
Steinberg variety. If x ∈ N then Mx is formed by pairs (x, b) where b runs over the
subset Bx of x invariant Borel subalgebras. Equivalently any element x ∈ g induces a
vector field on G/B and Bx is the zeros of this vector field.

Let G(x) be the centralizer of x in G, A(x) = G(x)/G(x)0 the isotopy group acting
on the connected components. Let A(x)∗ denote the set of isomorphism classes of A(x)-
representations occuring in the BM homology groups Htop(Mx). The main techincal result
known as "Springer construction of Weyl groups" is the following:

Theorem 5.7 (Geometric Construction of W ). 1. H(Z) ∼= C[W ]

2. The collection {H(Mx)ϕ} as (x, ϕ) runs over G conjugacy classes of points in N
and ϕ ∈ A(x)∗ is a complete set of irreducible representations of W .

5.1.6 Fourier transform

We introduce the main tool of the construction, the Fourier transform on perverse sheaves
(or D-modules).

5.2 Schubert varieties and Kazhdan Lustzig polynomials

Let G be an algebraic group. The Kazhdan Lustzig polynomials are a family of poly-
nomials defined for two Weyl group elements v, w in a Weyl group W with a system of
generators S.

Definition 5.8. The Hecke algebra H is the algebra of B-bi-invariant functions of
G(Fq). The algebra structure is given by normalized convolution. It has a basis consisting
of functions

ϕw = idBwB for w ∈ W

Lemma 5.9. If s ∈ S is a simple reflection and w ∈ W then we have the following
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relations

ϕw ∗ ϕw′ = ϕww′ if l(ww′) = l(w) + l(w′)
ϕs ∗ ϕs = (q − 1)ϕs + qϕ1

ϕs ∗ ϕw = (q − 1)ϕw + qϕsw if l(ws) = l(w) + 1

We have the "standard" description of Hecke algebra

Proposition 5.10. H is the free Z[q, q−1]-module with basis {ϕw}w∈W and relations

ϕsϕw = ϕsw if l(sw) = l(w) + 1
(ϕs − q)(ϕs + 1) = 0

If q = 1, then this is the group algebra Z[W ].

The convention is to use q 1
2 and q− 1

2 as the formal parameters. Each ϕw is invertible and
the algebra admits an involution

i(q 1
2 ) = q− 1

2 and i(ϕw) = ϕ−1
w−1

Theorem 5.11 (Kazhdan-Lusztig). For each w there is a unique cw ∈ H and a uniquely
determined polynomial Pyw with y ≤ w so that i(cw) = cw and Pww = 1 and Pyw(q) has
degree less than 1

2(l(w) − l(y) − 1) when y < w and

cw = q−l(w)/2 ∑
y≤w

Pyw(q)ϕy

Kazhdan and Lusztig conjectured that the coefficients of the polynomials Pyw(q) are
nonnegative integers and that in the Grothendieck group of Verma modules

[Lw] =
∑
y≤w

(−1)l(w)−l(y)Pyw(1)[My]

The second conjecture became known as the Kazhdan-Lustzig conjecture and was
proven by Beilinson-Bernstein and Brylinski-Kashiwara independently. The interpreta-
tion of cw and Pyw in terms of intersection cohomology was critical to the proof.

Theorem 5.12. Set for any v ≤ w the number hi(X̄w)v = dim Hi(ICX̄w
)v. Then

Pv,w(q) =
∑
i

hi(X̄w)vqi

is a polynomial in q with nonnegative integer coefficients.

5.3 Geometric Satake Isomorphism

Theorem 5.13. The category PO is equivalent to the category of representations of the
Langlands dual group LG, as categories with tensor and fiber structures.



6 CLOSER LOOK AT PERVERSE SHEAVES 16

There is a bilinear functor ⋆ : PO ×PO → PO with compatible commutativity, associativ-
ity restraints, and a fiber functor which respects the tensor product. In fact, one defines
the desired functor geometrically so that H, the operation of taking cohomology, is the
fiber functor. Therefore the equivalence is between

(PO, ⋆,H) ∼= (Rep(LG),⊗,Forget)

The G(O) orbits of the affine Grassmannian are indexed by dominant coweights λ. A
shadow of the geometric Satake isomorphism is the statement that the intersection coho-
mology of the λ-orbit is the irreducible representation of LG with highest weight λ.

6 Closer look at perverse sheaves

6.1 Precise definitions

The category of perverse sheaves is defined by relaxing the support and cosuppoort con-
ditions for the IC sheaf by one.

Definition 6.1. Let W be a n-dimensional Whitney stratified space. A middle per-
versity perverse sheaf on W is a complex of sheaves A• in the bounded constructible
derived category Db

c(W ) such that if S is a stratum of dimension d, A∗ satisfies the support
and cosupport conditions

H i(j∗
SA

∗) = 0 for all i > −d/2
H i(j!

SA
∗) = 0 for all i < −d/2

Definition 6.2. A perversity is a function on dimension p : Z≥0 → Z≥0 such that
p(0) = 0

p(d) ≥ p(d+ 1) ≥ p(d) − 1

Middle perversity is the perversity p(d) = −d/2. The category of perverse sheaves with
perversity p is those objects in Db

c(W ) for which

H i(j∗
SA

∗) = 0 for all i > p(dimS)
H i(j!

SA
∗) = 0 for all i < p(dimS)

Each perversity involves its own shift: for a space W of dimension n the stalk cohomology
of the IC sheaf in the top stratum is nonzero in degree p(n).

Remark 6.3. One can check that perversity 0 corresponds precisely to the category of
constructible sheaves (not complexes!, just sheaves).

Theorem 6.4. The category of middle perverse sheaves forms an abelian subcategory
of Db

c(X) that is preserved by Verdier duality.
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Theorem 6.5. If W is an algebraic variety, the simple objects are the shifted IC sheaves
with irreducible local coefficients of irreducible subvarieties.

Remark 6.6. To a D-module there is a corresponding sheaf of solutions which is con-
structible. Beilinson, Bernstein, Brylinski, and Kashiwara showed that each Verma mod-
lue can be associated to a certain holonomic D-module with regular singularities whose
sheaf of solutions turns out to be the IC sheaf. However, the category of D-modules is
abelian whereas the constructible derived category is not, so it was conjectured that there
is some abelian subcategory of the category which "receives the solution sheaves". This is
precisely the category of perverse sheaves with middle perversity!

6.2 Examples

Example 6.7. There are some special examples where we have conmbinatorial descrip-
tions of the middle perverse sheaves on an algebraic variety with respect to a stratification.

1. Cn with respect to hyperplane arrangements

2. Square matrices with respect to the rank stratification

3. The flag variety with respect to the Schubert stratification

In particular the most simple example is C, {0}. The category of perverse sheaves is
equivalent to the category of representations of the quiver

• •
α

β

for which I − αβ and I − βα are invertible.

Example 6.8. Stratify P1 with a single zero dimensional stratum N the north pole.
The support diagram for middle perversity sheaves is

i \ codim 0 2
2 c c
1 cx
0 x x

The columns index codimension of the strata and the rows index the cohomological degree
(the convention is 0 to n as opposed to −n/2 to n/2). x denotes that there may be
nontrivial stalk cohomology sheaves supported along strata of that given codimension. c
denotes that the same thing but with compactly supported cohomology stalks.

The category of perverse sheaves is equivalent to the category of representations of the
quiver

• •
α

β
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for αβ = βα = I. In particular there are 5 such indecomposable representations and con-
sequently, 5 simple perverse sheaves. They are QN [−1],QP1 , j!QU , j∗QU with the support
diagrams

i \ codim 0 2
2
1 cx
0

i \ codim 0 2
2 c c
1
0 x x

i \ codim 0 2
2 c c
1 c
0 x

i \ codim 0 2
2 c
1 x
0 x x

and the last one which is not an IC sheaf. It is gotten by taking a closed disk and putting
the constant sheaf on the interior and the 0 sheaf on the boundary, except for a point, and
then pushing this sheaf forward along the map D2 → S2 which collapses the boundary.
It has stalk cohomology and compactly supported stalk cohomology in degree 1. Verdier
duality interchanges these conditions and so this sheaf is self-dual. The first two sheaves
are self-dual as well and the last two are dual to each other. Verdier duality can be seen
by reflecting the support diagram across the horizontal axis and swapping x and c.

6.3 t-structures and perverse sheaves

6.3.1 Motivation: perversity 0 t-structure

Let W be a stratified space. The category of perversity 0 complexes of sheaves is equiv-
alent to the category of constructible ordinary sheaves Shc(W ).

Definition 6.9. Let A∗ be a complex of sheaves on W . We have truncation functors
τ≤r and τ≥r defined by

A∗ = Ar−1 → Ar → Ar+1 → · · ·
τ≤rA

∗ := Ar−1 → ker(dr) → 0 → · · ·
τ≥rA

∗ := 0 → coker(dr−1) → Ar → Ar+1 → · · ·

Then there is a short exact sequence 0 → τ≤0A
∗ → A∗ → τ≥1A

∗ → 0 and the cohomology
sheaf of A∗ is given by

H i(A∗) = τ≤iτ≥iA
∗

In particular we have the following theorem which is the version which we can generalize.

Theorem 6.10. The cohomology functor Hr : Db
c(W ) → Shc(W ) is given by the compo-

sition of the trunctation functors.The functor H0 restricts to an equivalence of categories
between Shc(W ) and the full subcategory of Db

c(W ) consisting of complexes A∗ such that
H i(A∗) = 0 for i ̸= 0. This category is Noetherian and Artinian and its simple objects
are the sheaves j!(E) where E is a simple local system on a single stratum j : X → W .

6.3.2 General t-structures

Fix a perversity p and let P(W ) be the category of perverse sheaves with perversity p on
W . Then



6 CLOSER LOOK AT PERVERSE SHEAVES 19

Proposition 6.11. There are truncation functors

pτ≤r : Db
c(W ) → Db

c(W )
pτ≥r : Db

c(W ) → Db
c(W )

which take distinguished triangles to exact seuqences and satisfy

pτ≤r(A∗) = (pτ≤0(A∗)[r])[−r]

Definition 6.12. We have the perverse cohomology

pHr(A∗) =p τ p≤rτ≥rA
∗

Theorem 6.13. The perverse cohomology functor pHr : Db
c(W ) → P(W ) is given by

the composition of the truncation functors. The functor pH0 restricts to an equivalence
of categories between P(W ) and the full subcategory of Db

c(W ) consisting of complexes
A∗ such that pH i(A∗) = 0 for i ̸= 0. This category is Noetherian and Artinian and its
simple objects are the sheaves Rj∗(IC∗

p(E)) where E is a simple local system on a single
stratum X and j : X̄ → W .

Remark 6.14. More generally, a t-structure on a triangulated category is a pair of
strictly full subcategories D≥0 and D≤0 satisfying technical conditions as above. In this
case, the heart P = D≥0 ∩ D≤0 is an abelian full subcategory.

6.4 Algebraic varieties and the decomposition theorem

6.4.1 Intersection cohomology

Intersection cohomology enjoys many of the same remarkable properties as ordinary co-
homology for algebraic varieties. In particular, the Lefschetz hyperplane theorem, the
hard Lefschetz theorem, the Lefschetz decomposition theorem, and the Hodge structure
all hold for intersection cohomology.

Theorem 6.15. Let W ⊂ CPN projective algebraic variety of dimension n. Let Lj be
a generic linear subspace of codimension j in CPN . If Lj is transverse to each stratum
of a Whitney stratification of W , then there are natural restriction maps

IHr(W ) → IHr(W ∩ Lj)
IHr(W ∩ Lj) → IHr+2j(W )

If L1 is transverse to W then the restriction map is an isomorphism for r ≤ n − 2 and
an injection for r = n− 1. If j ≥ 1 and Lj transverse to W then the composition

Lj : IHn−j(W ) → IHn−j(W ∩ Lj) → IHn+j(W )

is an isomorphism.
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Theorem 6.16. We have the Leftschetz decomposition which says that

IHr =
⊕
j≥0

LjIP r−2j

where the primitive cohomology IP i ⊂ IH i is the kernel of ·Ln−i+1. Poincare duality

IHn+r(W,Q) ∼= Hom(IHn−r(W,Q),Q)

and the Lefschetz isomorphism Lr : IHn−r(W ) → IHn+r(W ) induce a nondegenerate
bilinear pairing on IHn−r(W ). The Lefschetz decomposition is orthogonal with respect to
this pairing and its signature is described by the Hodge-Riemann bilinear relations.

6.4.2 Decomposition theorem

The decomposition theorem provides insight into the topology of algebraic maps. It was
first formulated and proved by Beilinson, Bernstein, and Deligne. Let f : X → Y be a
proper map of algebraic varieties. The decomposition theorems says that Rf∗ICX breaks
into a direct sum of intersection complexes of subvarieties of Y with coefficients in various
local systems, with shifts.

Theorem 6.17 (Decomposition theorem). Let f : X → Y be a proper map of algebraic
varieties.

1. Rf∗IC
∗
X = ⊕p

i Hi(Rf∗IC
∗
X)[−i] ( this says that the push forward sheaf is a direct

sum of perverse sheaves, in particular its own perverse cohomology sheaves )

2. Each summand is a semisimple perverse sheaf. In particular it is a direct sum of
shifted IC sheaves with local coefficients on irreducible subvarieties of Y , and it
enjoys all of the above properties of intersection cohomology.

3. Relative hard-Lefschetz theorem: if η is the class of a hyperplane of X then for all
r the map ηr :p H−r(Rf∗IC

∗
X) →p Hr(Rf∗IC

∗
X) is an isomorphism.

6.4.3 Example: square pyramid

The square pyramid does not correspond to a smooth toric variety because it is singular at
the tip where the four faces meet. However there is a resolution of singularities π : Ỹ → Y
given by corner chopping. We consider the decomposition theorem for this map.

The map is an isomorphism except at the singular point whose fiber π−1(y) = P1 × P1.
The stalk cohomology of the pushforward Rπ∗QỸ is Q, 0,Q ⊕ Q, 0,Q is equal to the
cohomology of the fiber. We consider the support diagram
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i \ codim 0 2 4 6 H∗(π−1(y))
6 c c c c
5 c c
4 c Q
3 0 0
2 x Q ⊕ Q
1 x x
0 x x x x Q

The support condition at the bottom of the table says Q[3] is part of the IC sheaf. The
Q[−1] at the top of the table is not part of the IC sheaf. By duality, neither is one of the
copies of Q in the middle. Finally, we can show that the other copy of Q in the middle is
part of the IC sheaf. These two terms constitute the primitive cohomology of the fiber.

7 Appendix A: Spectral Sequences

We exposit spectral sequences following [1] and [5].

7.1 First look

Recall that a short exact sequence of chain complexes

0 → A∗ → B∗ → C∗ → 0

induces a long exact sequence in cohomology

· · · → H i(A) → H i(B) → H i(C) → H i+1(A) → · · ·

We can view this as a piece of cohomological data coming from the two step filtration of
the total complex B∗ by 0 ⊂ A∗ ⊂ B∗. This is the beginning of a spectral sequence.

The filtration of the total complex descends to a filtration on cohomology. In particular
each page Er of the spectral sequence is filtered. There is a very special filtration on the
H∗(X,C) of a Kahler manifold coming from the Cech to de Rham spectral known as the
Hodge filtration.

Definition 7.1. A spectral sequence is a sequence (Er, dr) of bigraded abelian groups

Er =
⊕
p,q

Ep,q
r

for r ≥ 0 and differentials

dr : Ep,q
r → Ep+r,q−r+1

r

so that d2
r = 0 and H∗(Er, dr) = Er+1.
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7.2 Spectral sequence of a filtered complex

Proposition 7.2. Every filtered complex K∗ = F 0K∗ ⊃ F 1K∗ ⊃ · · · gives rise to a
spectral sequence with

Ep,q
0 = F pKp+q/F p+1Kp+q

Ep,q
1 = Hp+q(F pK∗/F p+1K∗) = Hp+q(GrpK∗)

Ep,q
∞ = Grp(Hp+q(K∗))

Proof. We have the differential inherited from K∗

d0 : Ep,q
0 → Ep,q+1

0

d0 : F pKp+q/F p+1Kp+q → F pKp+q+1/F p+1Kp+q+1

Note that the differential only increases the cohomological degree of K∗ by 1. We compute
the first page

Ep,q
1 = ker d0/ im d0

= {a ∈ F pKp+q | da ∈ F pKp+q+1}/d(F pKp+q−1) + F p+1Kp+q

= Hp+q(F pK∗/F p+1K∗)
= Hp+q(GrpK∗)

The next differential

d1 : Ep,q
1 → Ep+1,q

1

a 7→ da

is well-defined because

da ∈ {b ∈ F p+1Kp+q+1 | db ∈ F p+2Kp+q+2}

One can compute the kernel and image of d1 to get the second page, to find that

Ep,q
2 = {a ∈ F pKp+q | da ∈ F p+2Kp+q+1}/d(F p−1Kp+q−1) + F p+1Kp+q

Take denominator as written intersect the numerator. The general pattern is

Ep,q
r = {a ∈ F pKp+q | da ∈ F p+rKp+q+1}/d(F p−r+1Kp+q−1) + F p+1Kp+q

and then one can check that

H∗(Er, dr) = Er+1

For r sufficiently large we get that

Ep,q
∞ = {a ∈ F pKp+q | da = 0}/d(Kp+q−1) + F p+1Kp+q

= Grp(Hp+q(K∗))

as desired.
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7.3 Spectral sequence of a double complex

Let K∗,∗ be a double complex with differentials

d : Kp,q → Kp+1,q and δ : Kp,q → Kp,q+1

so that

d2 = δ2 = 0 and dδ + δd = 0

We form the associated single compex (K,D) with

K∗ =
⊕

p+q=n
Kp,q and D = d+ δ

There are two filtrations on (K∗, D), by rows and columns

F ′pKn =
⊕
i≤p

Ki,n−i

F ′′qKn =
⊕
i≤q

Kn−i,i

and there are two associated spectral sequences, both abuting to H∗(K,D). The corre-
sponding E2 pages turn out to be

E ′2
p,q = Hp

d(Hq
δ (K∗,∗))

E ′′2
p,q = Hq

δ (H
p
d(K∗,∗))

Example 7.3. If you consider the complex of real-valued forms on a manifold

0 → Ω0 → Ω1 → · · · → Ωn → 0

and filter it by the limit of all of the "good covers" (intersection of two opens is contractible)
of the manifold, then the associated spectral sequence is the Cech to de Rham spectral
sequence and realizes the de Rham isomorphism

H∗(X,R) ∼= H∗
dR(X)

Alternatively we can think about the de Rham isomorphism like this. Recall the following
lemma:

Lemma 7.4. A map of complexes of sheaves which is a quasi-isomorphism (i.e. induces
an isomorphism on all cohomology sheaves) induces an isomorphism on hypercohomology.

The point is is that this map will induce an isomorphism on the associated spectral
sequences.

Example 7.5. Again we have the real-valued de-Rham complex

0 → Ω0 → Ω1 → · · · → Ωn → 0
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and also the trivial complex R∗

R → 0 → 0

The d-Poincare lemma shows that these two complexes have the same cohomology sheaves
and therefore inclusion is a quasiisomorphism. Therefore the lemma shows they have the
same cohomology. Now consider the two spectral sequences at hand. We have

(E
′p,q
R∗ )2 = Hp(M,R) if q = 0 and 0 otherwise

so the spectral sequence is trivial and

Hp(M,R) = Hp(M,R∗)

On the other hand we compute Hq(M,Ω∗) = 0 if q > 0 by partition of unity and

E
′′p,q
Ω∗ = Hp

dR(M) if q = 0 and 0 otherwise

and so putting everything together we find that

Hp(M,R) ∼= Hp
dR(M)

7.4 Leray Spectral Sequence

Let f : X → Y be a continuous map of topological spaces. Recall that the q-th direct
image sheaf Rq

fF is the sheaf associated to the presheaf

U 7→ Hq(f−1(U),F)

The Leray spectral sequence is a spectral sequence with

Ep,q
2 = Hp(Y,Rq

fF)
E∞ → H∗(X,F)

This spectral sequence is particularly special when f : E → B is a fiber bundle with fiber
F . In this case, for the constant sheaf Q on E we have by the Kunneth formula

Hq(π−1(U),Q) ∼= H∗(F,Q)

which suggests

Rq
fQ ∼= H∗(F,Q)

is a constant sheaf on B. However this is not so because we have to account for the
monodromy action of π1(B) on the fibers.

Example 7.6. We consider the derivation of the Leray spectral sequence for de Rham
cohomology in the case of a fiber bundle. The relevant fact is that

Ep,q
2 = Hp

DR(B,Hq
DR(F,R))

where we can interpret the right hand side as the the de Rham cohomology of B with
coefficients in the local system Hq

DR(F,R).
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8 Appendix B: Homological algebra

What follows comes from [3].

8.1 The four functors f∗, f
∗, f!, f

!

There is a nice geometrical way to think about these functors which requires introducing
the leaf space or espace etale of a presheaf.

Definition 8.1. Given a presheaf F on a topological space X, the espace etale LF is
the disjount union of the stalks of F

LF =
⊔
x∈X

Fx → X

equipped with a topology that is discrete on each Sx and that makes π into a local home-
omorphism.

Given the leaf space, we have the sheafification of F given by U 7→ Γ(U,LF) and the
presheaf F is a sheaf if and only if it is isomorphic to its sheafification.

Definition 8.2. Given a continuous map f : X → Y and a sheaf F on X and G sheaf
on Y , we define the direct image f∗F on Y by

f∗F(U) = Γ(f−1(U),F)

and the inverse image f ∗G on X by

f ∗G(U) = lim
V⊃f(U)

G(V )

We also have the pushforward with proper support f! with sections Γ(U, f!F) con-
sisting of all sections s ∈ Γ(f−1(U),F so that the mapping closure(x ∈ U | s(x) ̸= 0) → U
is proper. In particular if X → Y is the inclusion of a subspace then f!F(U) is those
sections s ∈ Γ(U ∩X,F) with compact support.

Lemma 8.3. When Y is locally compact and X → Y is the inclusion then f!F = f∗F .

8.2 Adjunction

Let f : X → Y be a continuous map of topological spaces and F a sheaf on X and G a
sheaf on Y . Then there are natural maps

f ∗f∗F → F and G → f∗f
∗G

To see this for the first one, consider an open set U ⊂ X. Then

Γ(U, f ∗f∗F) = lim
V⊃f(U)

Γ(V, f∗F) = lim
V⊃f(U)

Γ(f−1(V ),F)
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has a natural map to Γ(U,F), compatible with restriction. For the second one, we have
V ⊂ Y open. If t is a section of LG over V , then the pullback by f is a section of the
leaf space of f ∗G, over the set f−1(V ). Therefore we have a map

Γ(V,G) → Γ(f−1(V ), f ∗G) = Γ(V, f∗f
∗G)

compatible with restriction. Therefore we have the following adjunction

Theorem 8.4. There are natural isomorphisms

Hom(f ∗G,F) ∼= Hom(G, f∗F)

Remark 8.5. One might ask if there is an adjoint to the functor f!. The answer is a
very subtle question and introduces Verdier duality.

8.3 Cohomology

Definition 8.6. A sheaf F is injective if for every 0 → A → B, any morphism A → F
can be extended to a morphism B → F . That is the diagram

0 A B

F

commutes. An injective resolution of a sheaf F is an exact sequence

0 → F → I0 → I1 → · · ·

where each I i is injective sheaf. The sheaf cohomology groups H∗(X,F) is the coho-
mology of the complex

0 → Γ(X, I0) → Γ(X, I1) → · · ·

Any other injective resolution of F will give the same cohomology groups up to canonical
isomorphism. Given a complex of sheaves F∗ we can also take the cohomology sheaves
H∗(F∗) := ker d/ im d. The stalk of the cohomology sheaf coincides with the cohomology of
the stalks. A morphism f : F → G of sheaves is a quasi-isomorphism if it induces an
isomorphism on all cohomology sheaves. A quasi-isomorphism induces an isomorphism
on cohomology groups.

Definition 8.7. The mapping cone C(ϕ) of a map ϕ : F∗ → G∗ of complexes of
sheaves is the total complex of the double complex corresponding to ϕ. We often write this
as a "magic triangle"

F∗ G∗ C(ϕ) F∗[1]ϕ

Mapping cones are interesting because they give rise to long exact sequences in cohomol-
ogy.
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Lemma 8.8. If ϕ is injective then there is a natural quasiisomorphism cokerϕ ∼= C(ϕ).
If ϕ is surjective then there is a natural quasiisomorphism C(ϕ) ∼= kerϕ[1]. Moreover
there is a long exact sequence on cohomology

· · · → Hr−1(G∗) → Hr−1(C(ϕ)) → Hr(F∗) → Hr(G∗) → Hr(C(ϕ)) → · · ·

Lemma 8.9. Let C∗∗ be a first quadrant double complex with exact rows and so that
the zeroth horizontal arrows d0q

h are injections (which is the same as saying we can add
an extra zero to the left end of each row). Then the total complex T is exact.

Proof. We will check that the total complex is exact at T 2. Let x = x02 + x11 + x20 ∈ T 2

and suppose that dx = 0. Then

dvx02 = 0
dvx11 + dhx02 = 0
dvx20 − dhx11 = 0

dhx20 = 0

and since the bottom row is exact, we have x20 = dhy10 for some y10. Consider x′
11 = x11−dvy10.

Then

dhx
′
11 = dhx11 − dhdvy10 = dhx11 − dvdhy10 = dhx11 − dvx20 = 0

Since the row is exact, we have x′
11 = dhy01 for some y01, and the argument continues.

Check that d(y01 + y10) = x. The argument is the same in the general case.

Corollary 8.10. Let C∗∗ be a first quadrant double complex with exact rows. Let T ∗ be
the total complex and Ar = ker(d0,r : C0,r → C1,r) be the subcomplex of the zeroth column
with vertical differential. Then the inclusion A∗ → T ∗ is a quasiisomorphism.

Proof. Augment C∗∗ by putting the complex A∗ in the −1th column. Then the total
complex S∗ of the augmented complex is precisely the mapping cone of the inclusion
A∗ → T ∗. Therefore there is a long exact sequence in cohomology

· · · → Hr−1(T ∗) → Hr−1(S∗) → Hr(A∗) → Hr(T ∗) → · · ·

and by the previous lemma, S∗ is exact. Therefore the inclusion A∗ → T ∗ is a quasiiso-
morphism.

Remark 8.11. What have we done? Given a complex of sheaves A∗, take an injective
resolution of each sheaf and stack them up to get a double complex. It’s not so obvious
you can do this but Goresky assures me we can. Then what we are saying is that we can
take the total complex and the resulting map A∗ → T ∗ is a quasiisomorphism.

Thus we end up with the following definition which works in any abelian category.
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Definition 8.12. An injective resolution of a complex A∗ is a quasi-isomorphism
A∗ → T ∗ where each T r is an injective object. The cohomology Hr(X,A∗) is the coho-
mology of the complex of global sections of any injective resolution of A∗.

Example 8.13. Consider the resolution of a single sheaf S. It is a quasi-isomorphism

0 S 0 0 · · ·

0 I0 I1 I2 · · ·

Recall the Poincare lemma which says that closed forms on a smooth manifold are locally,
when restricted to a Euclidean ball, exact. The statement about sheaves is that we have
a resolution of the constant sheaf by the de Rham complex

0 R 0 · · ·

0 Ω0 Ω1 · · ·

which one again proves the de Rham isomorphism Hr(M,R) ∼= Hr
dR(M).

Definition 8.14. The Cech cohomology of a sheaf F on a topological space X is defined
for an open cover U of X by the complex

0 → F(X) →
∏
U∈U

F(U) →
∏

U,V ∈U
F(U ∩ V ) → · · ·

The cohomology of this complex is the Cech cohomology Ĥ∗(X,F).

Theorem 8.15. Suppose F is a sheaf on X and U is an open cover of X so that

Hr(UJ ,F) = 0 for all r > 0 and all finite intersections UJ

Then there is a canonical isomorphism

H∗(X,F) ∼= Ĥ∗(X,F)

The proof of this theorem is via first sheafifying the Cech complex which is functorial,
picking an injective resolution of F and combining the two to get a double complex. The
cohomology of this total complex is equal to both the LHS and RHS of the theorem.

8.4 Derived categories and derived functors

The motto is: derive by taking injective resolutions.

8.4.1 First construction

Definition 8.16. Two morphisms of complexes are homotopic if there is a chain of
maps hr : Ar → Br−1 so that dBh+hdA = dA. Let [A∗, B∗] be the set of homotopy classes
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of morphisms of complexes. Define the complex of abelian groups
Homn(A∗, B∗) =

∏
r

Hom(Ar, Br+n) (1)

with differential d(f) = dBf − (−1)nfdA.

We have the following
Hn(Hom∗(A∗, B∗)) = [A∗, B∗[n]]

Definition 8.17. The bounded homotopy category Kb(X) of complexes of sheaves
on a topological space X is the category whose objects are bounded complexes of sheaves
and whose morphisms are homotopy classes of maps.

The bounded derived category Db(X) is homotopy category of injective sheaves. Its
objects are bounded complexes of injective sheaves and its morphisms are homotopy classes
of maps.

Remark 8.18. In topology, homotopic maps induce the same map on cohomology. In
the derived category, the same is true. However, the following lemmas will show that once
you restrict your objects to injective complexes, every quasi-isomorphism between injective
complexes is in fact a homotopy equivalence. Therefore, this interprets the statement
"inverting quasi-isomorphisms" as being the same as restricting to the injective objects.

This lemma is where the work happens and then everything else follows.

Lemma 8.19. Let C∗ be a bounded complex of sheaves and suppose that all cohomology
sheaves are zero. Let J∗ be injective. Then any map C∗ → J∗ is homotopic to zero.

The proof is quite standard, but we get a lot out of it:

Corollary 8.20. The following hold:

1. Suppose J∗ is injective and has no cohomology. Then J is homotopy equivalent to
the zero complex.

2. Let ϕ : X∗ → Y ∗ be a quasi-isomorphism of bounded complexes of injective sheaves.
Then ϕ is a homotopy equivalence.

3. Let A∗ → I∗ and B∗ → J∗ be injective resolutions of complexes A∗ and B∗ and
f : A∗ → B∗ a map of complexes. There is a lift f̃ : I∗ → J∗ unique up to
homotopy.

4. f : A∗ → B∗ a quasiisomorphism induces an isomorphism on hypercohomology.

Remark 8.21. Injective objects are like CW complexes, and these facts are basically
about the homotopy theory of CW complexes. The first statement is Whitehead’s theorem.
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There is a functor Kb(X) → Db(X) which sends a complex of sheaves to its "canonical"
Godemont injective resolution. If A∗ → B∗ is a quasi-isomorphism of complexes of
sheaves, then it becomes an isomorphism in the derived category.

Definition 8.22. The right derived functor RT : Db(X) → Db(Y ) of a functor
T : Sh(X) → C is defined by replacing a complex A∗ by its injective resolution I∗ and
applying T to get TI∗.

Remark 8.23. We emphasize that the hypercohomology of RHom is exactly the group
of homomorphisms in the derived category:

H0(RHom(A∗, B∗)) = HomDb(X)(A∗, B∗)

8.4.2 Second construction

The derived category can also be interpreted as a quotient category of the category of
complexes of sheaves, by inverting quasi-isomorphisms. Let Eb(X) be the category of
bounded complexes of sheaves on X with a morphism A∗ → B∗ being the data of a
diagram

C∗

A∗ B∗
qi

up to the equivalence relation between two morphisms C∗
1 and C∗

2 if there is a diagram
like

C1

A C3 B

C2

qi

and then there is a natural functor Db(X) → Eb(X) which is an equivalence of categories.

Definition 8.24. A functor T : C → D between abelian categories is exact if it pre-
serves exact sequences and left exact if it preserves kernels. An object X is T -acyclic
if Hr(TX) = 0 for all r > 0.

The advantage of T -acyclic objects is that one can use them in place of injective objects
when computing derived functors.

Lemma 8.25. Let T be left exact and A∗ → X∗ a quasi-isomorphism of complexes. If
Xr is T -acyclic for all r > 0 then RT (A∗) can be computed by the complex TX∗.
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Proof. The proof follows from the fact that if the rows of a double complex are exact,
then the total complex is exact. The condition that Xr is T -acyclic for all r > 0 is about
the rows of the double complex being exact once you apply T to an injective resolution.

Remark 8.26. Fine, flabby, soft sheaves are all Γ-acyclic. Therefore, sheaf cohomology
may be computed with any of those resolutions.

8.5 Verdier duality

Verdier duality is a generalization of Poincaré duality to the setting of sheaf theory
on possibly singular spaces. It provides a duality between cohomology and compactly
supported cohomology, expressed in terms of derived categories.

8.5.1 Borel-Moore homology

Borel and Moore defined a sheaf C∗
BM whose presheaf of sections is the "locally finite

r dimensional chians in U". The cohomology of this sheaf is called the Borel-Moore
homology H∗

BM(X). Moreover, the compactly supported cohomology of this sheaf is the
same as the singular homology of X.

H−i
c (X,C∗

BM) = Hi(X)

and the stalk cohomology is the local homology of X at x.

H−r
x (X,C∗

BM) = Hr(X,X − x)

8.5.2 The dual of a complex

Borel and Moore also gave a way to define the dual D(S∗) of a complex of sheaves S∗.
Unfortunately, the double dual of S∗ is not S∗. Later Verdier discovered another way to
interpret the BM dual sheaf theoretically:

D(S∗) = RHom∗(S∗,D∗)

where D∗ is a universal sheaf called the dualizing complex. Then Verdier showed that
there is a canonical quasiisomorphism in the derived category

S∗ → D(D(S∗))

thereby restoring double duality. When we are talking about R = Z-modules, the dual-
izing complex is precisely D∗ = RHom∗(Z,D∗) = D(Z) is the Borel-Moore dual of the
constant sheaf, so it is the sheaf of chains.

Definition 8.27. If f : X → Y is a continuous map and S∗ is a complex of sheaves on
Y define f !(S∗) = DX(f ∗(DY (S∗))).

Definition 8.28. Let i : Z → X closed subspace and j : U → X open complement.
If S is a sheaf on X define i!(S) to be the restriction to Z of the presheaf with sectinos
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supported in Z, that is

i!(S) = i∗(SZ) and SZ(V ) = {s ∈ S(V ) | supp s ⊂ Z}

Thus if W ⊂ Z is open then

i!(S)(W ) = lim
V⊃W

S(V )

Definition 8.29. A triangle of morphisms

A∗ → B∗ → C∗ → A∗[1]

in Db(X) is distinguished if it is homotopy equivalent to a mapping cone C(ϕ) of a
morphism ϕ : A∗ → B∗. This means that there should be maps between the objects in the
two triangles so that the squares commute up to homotopy.

Theorem 8.30 (Verdier duality). Let f : X → Y be a stratified mapping between
Whitney stratified spaces. Let A∗, B∗, C∗ be constructible sheaves of abelian groups of
X, Y, Y respectively. Then f ∗, f !, Rf∗, Rf! take distinguished triangles to distinguished
triangles. There are canonical isomorphisms in Db

c(X) as follows.

1. DD(A∗) ∼= A∗

2. D∗
X

∼= f !(D∗
Y )

3. f !(A∗) ∼= DX(f ∗(DY (A∗)))

4. Rf!(A∗) ∼= DY (Rf∗(DX(A∗))) so f ! is the dual of f ∗ and Rf! is the dual of Rf∗.

5. f !RHom∗(B∗, C∗) ∼= RHom∗(f ∗B∗, f !C∗)

6. Rf∗(RHom∗(A∗, f !B∗)) ∼= RHom∗(Rf!A
∗, B∗) is the statement of Verdier duality.

This says that Rf! and f ! are adjoint just as Rf∗ and f ∗ are adjoint.

7. Rf∗RHom∗(f ∗B∗, A∗) ∼= RHom∗(B∗, Rf!A
∗)

8. Rf!(RHom∗(A∗, f !B∗)) ∼= RHom∗(Rf!A
∗, B∗)

9. If f : X → Y is an open inclusion then f !B∗ ∼= f ∗B∗

10. If f : X → Y closed inclusion then Rf!A
∗ ∼= Rf∗A

∗.

11. If f : X → Y inclusion of oriented submanifold and B∗ is cohomologically locally
constant on Y then f !B∗ ∼= f ∗B∗[dim Y − dimX].
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