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Abstract

A detailed exploration of the theory of stacks and moduli spaces. We aim to
bridge the abstract formalism of stacks with concrete examples, such as moduli
spaces of vector bundles and principal bundles. The interplay between algebraic
geometry, category theory, and topology is emphasized, showcasing the power of
stacks as a unifying framework. Key results, including the Verlinde formula and
the classification of principal bundles via loop groups, are discussed.
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1 Goals

We should try to understand the following results from various historical papers. Each
of them really should merit its own discussion.

1.1 Statements from the general theory of stacks

Proposition 1.1. The stack ∗/G, defined as the sheafification of (∗/G)naive, represents
the following moduli problem:

(∗/G)(X) = Groupoid of principal G-torsors over X.

Proposition 1.2. There is an equivalence of categories:

QCoh(BG) ↔ QCohG(pt) ↔ Rep(G).

Theorem 1.3. For any morphism of schemes X → Y , the functor hX is a sheaf in the
fppf topology (and therefore also in the etale topology) on the category of Y-schemes.

1.2 Statements from moduli theory of Riemann surfaces

There is a canonical isomorphism between two vector spaces associated to a Riemann
surface X. The first of these spaces is the space of conformal blocks Bc(r) (also called
the space of vacua), which plays an important role in conformal field theory.

Definition 1.4. Choose a point p ∈ X, and let AX be the ring of algebraic functions
on X − p. To each integer c ≥ 0 is associated a representation Vc of the Lie algebra
slr(C((z))), the basic representation of level c (more correctly it is a representation
of the universal extension of slr(C((z))). The ring AX embeds into C((z)) by associating
to a function its Laurent development at p; then Bc(r) is the space of linear forms on Vc
which vanish on the elements A(z)v for A(z) ∈ slr(AX), v ∈ Vc.

The second space comes from algebraic geometry, and is defined as follows.

Definition 1.5. Let SUX(r) be the moduli space of semi-stable rank r vector bundles
on X with trivial determinant. One can define a theta divisor on SUX(r) in the same
way one does in the rank 1 case: one chooses a line bundle L on X of degree g − 1,
and considers the locus of vector bundles E ∈ SUX(r) such that E ⊗ L has a nonzero
section. The associated line bundle L is called the determinant bundle; the space we
are interested in is H0(SUX(r),Lc).
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This space can be considered as a non-Abelian version of the space of cth-order theta
functions on the Jacobian of X, and is sometimes called the space of generalized theta
functions.

We will prove that it is canonically isomorphic to Bc(r). This implies thatH0(SUX(r),Lc)
satisfies the fusion rules, which allow to compute its dimension in a purely combinatorial
way. A closed expression for this dimension is known as the Verlinde formula.

Theorem 1.6 (Verlinde formula). We have

dimH0(SUX(r),Lc) =
(

r

r + c

)g ∑
S⊂[1,r+c]

|S|=r

∏
s∈S
t/∈S

∣∣∣∣2 sin π s− t

r + c

∣∣∣∣g−1

2 Motivating example BZ2

We begin by recalling vector bundles and Cech cohomology. A rank n vector bundle
E over a topological space X is a topological space E together with a continuous map
π : E → X such that:

1. For each x ∈ X, the fiber π−1(x) has the structure of an n-dimensional vector space.

2. For each x ∈ X, there is open U of x and a homeomorphism φ : π−1(U) → U ×Rn

such that:

• π = pr1 ◦ φ where pr1 : U × Rn → U is the projection.

• For each y ∈ U , the restriction φ|π−1(y) : π−1(y) → {y} × Rn is a linear
isomorphism.

In particular, vector bundles can be glued together from local data using transition func-
tions. Given an open cover {Ui}i∈I of X, a vector bundle can be specified by transition
functions gij : Ui ∩ Uj → GLn(R) satisfying the cocycle condition:

gij · gjk = gik on Ui ∩ Uj ∩ Uk

This naturally leads us to Čech cohomology, which provides a framework for understand-
ing when local data can be glued to form global structures. For a sheaf F on X and open
cover U = {Ui}i∈I , we define the Čech complex:

Č0(U ,F) → Č1(U ,F) → Č2(U ,F) → · · ·

where

Čk(U ,F) =
∏

i0<i1<···<ik
F(Ui0 ∩ · · · ∩ Uik)

and the coboundary map is given by:

(δs)i0,...,ik+1 =
k+1∑
j=0

(−1)jsi0,...,îj ,...,ik+1
|Ui0 ∩···∩Uik+1
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In particular, a 1-cochain is an arbitrary collection of sections sij ∈ F(Ui∩Uj), a 1-cocycle
is a collection of sections sij exactly satisfying the cocycle condition, and a 1-coboundary
is a collection of sections of the form si − sj for some si ∈ F(Ui) and sj ∈ F(Uj).

The cohomology of this complex gives the Čech cohomology groups Ȟ i(U ,F). We obtain
the Cech cohomology groups Ȟ i(X,F) by taking the direct limit over all open covers of
X. In particular, Ȟ1(X,GLn) classifies rank n vector bundles on X, where GLn is the
sheaf of functions X → GLn(R).

The key takeaway is that isomorphism classes of vector bundles on X are classified by
elements of Ȟ1(X,GLn), and that this cohomology group captures symmetries of the
fiber Aut(V ) = GLn(R) and how these symmetries can be glued together to form a
global object. These concepts will be generalized as we develop the theory of stacks and
algebraic spaces.

2.1 Category theory

Definition 2.1. Let C,D be categories and F,G : C → D be functors. A natural
transformation η : F → G is a collection of morphisms ηX : F (X) → G(X) for
each object X ∈ C such that for any morphism f : X → Y in C, the following diagram
commutes:

F (X) F (Y )

G(X) G(Y )

F (f)

ηX ηY

G(f)

A natural transformation is an isomorphism if each ηX is an isomorphism in D.

Definition 2.2. Let C,D be categories. A functor F : C → D is an equivalence
if there exists a functor G : D → C and natural isomorphisms µ : G ◦ F → idC and
ν : F ◦G → idD.

Proposition 2.3. Let C,D be categories. A functor F : C → D is an equivalence if and
only if it is full, faithful, and essentially surjective. This means that

• Full: For any X, Y ∈ C, the map HomC(X, Y ) → HomD(F (X), F (Y )) is surjective.

• Faithful: For any X, Y ∈ C, the map HomC(X, Y ) → HomD(F (X), F (Y )) is injec-
tive.

• Essentially surjective: For any Z ∈ D, there exists X ∈ C such that F (X) ≃ Z
where ≃ denotes isomorphism in D.

Definition 2.4 (Fiber Product of Groupoids). If A, B, and C are groupoids, and
F : A → C and G : B → C are functors, then the fiber product A ×C B is the groupoid
defined as follows:
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• Objects: Triples (a, b, ϕ) where a ∈ ob(A), b ∈ ob(B), and ϕ : F (a) ∼→ G(b) is an
isomorphism in C

• Morphisms: A morphism (a, b, ϕ) → (a′, b′, ϕ′) consists of a pair (φ, ψ) of iso-
morphisms φ : a ∼→ a′, ψ : b ∼→ b′ so that

F (a) F (b)

F (a′) F (b′).

ϕ

F (φ) G(ψ)

ϕ′

Example 2.5. The fiber product of ∗ ×(∗/G) ∗, where ∗ is the trivial groupoid, is given
by:

G ∗

∗ ∗/G.

where G represents the set of elements of the group G thought of as a set in Gpd. This
follows directly from the construction of fiber products described above.

2.2 The stack BZ2

Consider the group Z2 = Z/2Z with the discrete topology. We will answer the question:
for a topological space T , what are the T -points of BZ2 = ∗/Z2, i.e. a map T → BZ2?
It turns out that these correspond to principal Z2-torsors on T , i.e. a space P with a free
transitive action of Z2 with a map P → T that is Z2-equivariant.

Our first guess to define the functor of points ofBZ2, which we shall call (∗/Z2)naive : Top → Gpd,
is given by (∗/Z2)naive(T ) = Maps(T, ∗)/Maps(T,Z2) = ∗/Maps(Zπ0(T )

2 ). This is almost
right; however, this functor into groupoids does not actually define a sheaf.

To see this, let T = S1. We see that (∗/Z2)naive(S1) = ∗/Maps(S1,Z2) = ∗/Z2, where the
latter is thought of as just the groupoid. Now, a sheaf is characterized by the property
that compatible local sections patch uniquely into global sections. Cover S1 by two open
arcs U0 and U1 such that U0 ∪U1 = S1, and such that U0 ∩U1 consists of two disconnected
arcs A ⊔B.

We see that

(∗/Z2)naive(U0) = ∗/Z2, (1)
(∗/Z2)naive(U1) = ∗/Z2 (2)

and

(∗/Z2)naive(U0 ∩ U1) = ∗/(Z2 × Z2), (3)
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since U0 ∩ U1 = A ⊔ B has two disconnected components. The restrictions resU0
U0∩U1 and

resU1
U0∩U1 both correspond to the diagonal embedding ∆ : ∗/Z2 → ∗/(Z2 ×Z2). Therefore,

if (∗/Z2)naive were to be a sheaf, we need that

∗/Znaive
2 (S1) = ∗/Z2 ×∗/(Z2×Z2) ∗/Z2

where this fiber product is taken in the category of groupoids.

We can check that the objects of the category ∗/Z2 ×∗/(Z2×Z2) ∗/Z2 are given by triples
(∗, ∗, g) where g ∈ Z2 ×Z2. Morphisms from (∗, ∗, g) to (∗, ∗, g′) are pairs of isomorphisms
ϕ : ∗A → ∗A and ψ : ∗B → ∗B so that

∗C ∗C

∗C ∗C

gC

F (φ) G(ψ)

g′
C

in particular pairs of elements ϕ ∈ ∆Z/2 and ψ ∈ ∆Z/2 so that ϕg = g′ψ.

1. Consider the morphisms from (e, e) to (e, e). If ψ = ϕ = ∆(e) then

(e, e) ∗ ∆(e) = (e, e) = (e, e) ∗ ∆(e)

If ψ = ϕ = ∆(g) then similarly

(e, e) ∗ ∆(g) = (g, g) = (e, e) ∗ ∆(g)

However if ψ = ∆(e) and ϕ = ∆(g) then

(e, e) ∗ ∆(g) = (g, g) ̸= (e, e) = (e, e) ∗ ∆(e)

and similarly if ψ = ∆(g) and ϕ = ∆(e).

2. The morphisms from (g, g) to (g, g) are similar.

3. The morphisms from (e, e) to (g, g) are ϕ = ∆(g), ψ = ∆(e) and ϕ = ∆(e), ψ = ∆(g).
Likewise for the morphisms from (g, g) to (e, e).

4. There are no morphisms from (e, g) to (e, e).

So one connected component of the fiber product is the following category C. It has two
objects (e, e) and (g, g) and

Hom((e, e), (e, e)) = Hom((g, g), (g, g)) = {(e, e), (g, g)}
Hom((e, e), (g, g)) = Hom((g, g), (e, e)) = {(e, g), (g, e)}

This category is equivalent to the groupoid ∗/Z2. There is a functor F : C → ∗/Z2 which
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we will define as follows. We send all objects to ∗ and

(e, e) ∈ Hom((e, e), (e, e)) 7→ e ∈ Hom(∗, ∗)
(g, g) ∈ Hom((e, e), (e, e)) 7→ g ∈ Hom(∗, ∗)
(e, e) ∈ Hom((g, g), (g, g)) 7→ e ∈ Hom(∗, ∗)
(g, g) ∈ Hom((g, g), (g, g)) 7→ g ∈ Hom(∗, ∗)
(e, g) ∈ Hom((e, e), (g, g)) 7→ e ∈ Hom(∗, ∗)
(g, e) ∈ Hom((e, e), (g, g)) 7→ g ∈ Hom(∗, ∗)
(e, g) ∈ Hom((g, g), (e, e)) 7→ e ∈ Hom(∗, ∗)
(g, e) ∈ Hom((g, g), (e, e)) 7→ g ∈ Hom(∗, ∗)

In terms of compatibilty, since we have that (g, g) = (e, g) ◦ (g, e) as a morphism from
(e, e) to (g, g) to (e, e) which maps to g, we must insist that (e, g) 7→ e and (g, e) 7→ g or
vice versa. The functoriality constraints manifest themselves in this form.

The functor G : ∗/Z2 → C is defined in the following way.

∗ 7→ (e, e)
e 7→ (e, e)
g 7→ (g, g)

Finally it remains to check that F and G define an equivalence of categories, in particular
that F ◦G ≃ id∗/Z2 and G ◦ F ≃ idC. Certainly the first equivalence is clear. As for the
second equivalence, I will give a natural transformation µ : H = GF → idC which will in
fact be a natural isomorphism. In particular, for the objects (e, e) and (g, g) we define
the following morphisms

µ(e,e) : H(e, e) → id(e, e)
µ(g,g) : H(g, g) → id(g, g)

by

µ(e,e) : (e, e) → (e, e) µ(e,e) = (e, e)
µ(g,g) : (e, e) → (g, g) µ(g,g) = (e, g)

These are clearly isomorphisms. The naturality of µ is tedious to check but straightfor-
ward. Alternatively, we can verify that F : C → ∗/Z∈ is an equivalence by checking that
it is full, faithful, and essentially surjective. In fact, after writing this, I realize that this
is the easier way to check that F is an equivalence.

This establishes that the fiber product ∗/Z2 ×∗/(Z2×Z2) ∗/Z2 is a disjoint union of two
copies of ∗/Z2. On the other hand, we have already seen that (∗/Z2)naive(S1) = ∗/Z2.
Therefore, the naive functor (∗/Z2)naive is not a sheaf. Thus we need to sheafify/stackify
this functor to obtain the correct functor of points of BZ2. This regards the naive functor
as true “only locally”, and builds the general functor by gluing these local functors. This
is the true definition of the functor of points of BZ2.
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2.3 Topological interpretation

In the topological setting, we can define the stack ∗/Z2 directly. Recall that for any space
T , we have the corresponding fundamental groupoid π≤1(T ). Then we can define:

(∗/Z2)(T ) = Fun(π≤1(T ), ∗/Z2), (4)

where the isomorphisms are given by natural isomorphisms of functors. This is automat-
ically a sheaf, and it tells us why the naive ∗/Z2 did not work for S1: the fundamental
group of S1 is nontrivial. On the other hand, for simply connected test spaces T , the
naive functor does indeed give the correct groupoid.

Given a general space X, we use a good cover of X; i.e., one for which all the open sets
and finite intersections of the open sets in the cover are contractible. (In fact, we can
relax this constraint: we need only have all single, double, and triple intersections in our
open cover be simply-connected.)

Gluing two sections π≤1(Ui ∩ Uj) → ∗/Z2 and π≤1(Uj ∩ Uj) → ∗/Z2 (which we imagine
to be coming from π≤1(Ui) → ∗/Z2 and π≤1(Uj) → ∗/Z2, respectively) is the same as
providing a natural transformation between these two functors π≤1(Ui ∩ Uj) → ∗/Z2.
Since π≤1(Ui ∩ Uj) is equivalent to trivial category ∗, we see that this is the same as an
isomorphism ∗ → ∗ in ∗/Z2; i.e., and element Z2, which we call gji. We see that the gji
must satisfy a cocycle condition, and that two cocycles correspond to the same family if
the usual coboundary equivalence holds. Thus we have that

(∗/Z2)(X) = Groupoid of 2-point families over X

2.4 BG in generality

Proposition 2.6. The stack ∗/G, defined as the sheafification of (∗/G)naive, represents
the following moduli problem:

(∗/G)(X) = Groupoid of principal G-torsors over X.

Definition 2.7. Let G be an algebraic group. The classifying stack BG = ∗/G is the
stack whose S-points are BG(S) = groupoid of principal G-bundles on S.

For exactly the formal reasons outlined above (in the topological setting), this is the
sheafification of

(∗/G)naive : S 7→ ∗/G(S).

We note that there is a canonical map of stacks ∗ → ∗/G. For an arbitrary test-scheme
S, the composition of the map S → ∗ with the vertical quotient map must provide us
with a particular isomorphism class of G-torsor over S: this is simply the trivial G-torsor.
And given a torsor P over S and the bottom map is the corresponding map S → ∗/G,
we have a Cartesian diagram:
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P ∗

S ∗/G.P

Because any isomorphism class of torsor can thus be "pulled back" from the torsor
∗ → ∗/G along a map S → ∗/G, we say that ∗ → ∗/G is the "universal G-torsor."

3 Formalities

We introduce formal framework underlying the theory of stacks, beginning with Grothendieck
topologies and their role in defining sheaves on sites. We then explore the foundational
concepts of morphisms of schemes, which are essential for understanding the various
topologies used in algebraic geometry, such as the Zariski, étale, fppf, and fpqc topolo-
gies. These topologies provide the scaffolding for the definition of stacks, which generalize
sheaves to categories fibered in groupoids.

3.1 Grothendieck Topologies

Definition 3.1 (Grothendieck Topology). A Grothendieck topology J on a category C
assigns to each object U in C a collection J(U) of families of morphisms {fi : Ui → U}i∈I
(called covering families or sieves) satisfying:

1. Stability under isomorphism: If {fi : Ui → U}i∈I ∈ J(U) and g : V → U is
an isomorphism, then {fi ◦ g−1 : Ui → V }i∈I ∈ J(V ).

2. Stability under base change: If {fi : Ui → U}i∈I ∈ J(U) and g : V → U is any
morphism, then the family of pullbacks {V ×U Ui → V }i∈I ∈ J(V ).

3. Transitivity: If {fi : Ui → U}i∈I ∈ J(U) and for each i ∈ I, we have

{gij : Vij → Ui}j∈Ji
∈ J(Ui), then the composite family {fi◦gij : Vij → U}i∈I,j∈Ji

∈ J(U).

Definition 3.2 (Site). A site is a category C equipped with a Grothendieck topology.

Example 3.3. Let C be the category of open sets in a topological space X, with in-
clusions as morphisms. We can define a Grothendieck topology by declaring a family
{Ui ↪→ U}i∈I ∈ J(U) if and only if ⋃i∈I Ui = U . This is called the small classical site.

If X is a scheme, we can do the same thing with the category of Zariski open sets. This
is called the small Zariski site.

Example 3.4. Let X be a scheme, and let C be the category of X-schemes. For
(U → X) ∈ C define Cov(U) to be the set of collections of X-morphisms {Ui → U}i∈I
for which each Ui → U is an open embedding and U = ⋃

i∈I Ui. Then Cov defines a
Grothendieck topology on C, called the big Zariski topology on the category of X-
schemes.
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Remark 3.5. Recall the small classical site for a topological space X. The key ob-
servation is that the notion of a sheaf on X depends only on the underlying category of
opens and the distinguished collections of maps {Ui → U} which are coverings. This
abstraction allows us to generalize the concept of sheaves beyond topological spaces to
any category equipped with a notion of "covering," which is precisely what a Grothendieck
topology provides.

In other words, once we have defined a Grothendieck topology on a category, we can define
and work with sheaves in exactly the same way as we do for topological spaces, without
requiring any underlying topological structure. This allows us to work with sheaves on
schemes, algebraic spaces, and stacks using various topologies (Zariski, étale, fppf, etc.).

Definition 3.6 (Sheaf on a Site). Let (C, J) be a site. A presheaf F : Cop → Sets is
a sheaf if for every covering family {fi : Ui → U}i∈I ∈ J(U), the following sequence is
exact:

F (U) →
∏
i∈I
F (Ui) ⇒

∏
i,j∈I

F (Ui ×U Uj)

where the two parallel arrows represent the two natural projections.

3.2 On morphisms of schemes

We include a few definitions and results about morphisms of schemes which are relevant
to the Grothendieck topologies we will introduce. For more general details, see the
Appendix.

Definition 3.7. If A is a ring and M is an A-module, then M is called of finite
presentation if there exists an exact sequence

Ar → As → M → 0

for some integers r and s. Note that in the case when A is noetherian, this is equivalent
to M being finitely generated (as the kernel of any surjection As → M is automatically
finitely generated), but in general M being of finite presentation is a stronger condition
than being finitely generated.

If A → B is a ring homomorphism, then we say that B is of finite presentation over
A (or that B is a finitely presented A-algebra) if there exists a surjection

π : A[X1, . . . , Xs] → B

with kernel Ker(π) a finitely generated ideal in A[X1, . . . , Xs]. If A is noetherian this
is equivalent to B being a finitely generated A-algebra, but in general B being of finite
presentation is a stronger condition than being finitely generated.

Let X be a scheme. A quasi-coherent sheaf F on X is called locally finitely presented
if for every affine open subset Spec(B) ⊂ X the module Γ(Spec(B),F) is a finitely
presented B-module.
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Note that if X is locally noetherian then a quasi-coherent sheaf is locally finitely presented
if and only if it is coherent.

In the case when Y is noetherian, the morphism f is locally of finite presentation if and
only if f is locally of finite type, and finitely presented if and only if of finite type.

Definition 3.8 (Flat Module). Let R be a ring and let M be an R-module. We say
that M is flat over R if the functor M ⊗R − : ModR → ModR is exact.

Equivalently, M is flat if for every injective homomorphism of R-modules N1 → N2, the
induced map M ⊗RN1 → M ⊗RN2 is also injective. This is because the functor M ⊗R −
is right exact, so we only need to check that it preserves injections.

Proposition 3.9 (Characterizations of Flatness). For an R-module M , the following
are equivalent:

1. M is flat over R.

2. For every ideal I ⊆ R, the natural map I ⊗RM → IM is an isomorphism.

3. For every finitely generated ideal I ⊆ R, the natural map I ⊗R M → IM is an
isomorphism.

4. TorR1 (M,R/I) = 0 for every ideal I ⊆ R.

5. TorR1 (M,N) = 0 for every R-module N .

Proof. We’ll prove the equivalence through a cycle of implications.

(5) ⇒ (4): This is immediate, as we’re restricting to the special case where N = R/I.

(4) ⇒ (3): Let I ⊆ R be a finitely generated ideal. Consider the exact sequence

0 → I → R → R/I → 0

Applying − ⊗RM , we get the long exact sequence for Tor:

· · · → TorR1 (R,M) → TorR1 (R/I,M) → I ⊗RM → R ⊗RM → (R/I) ⊗RM → 0

Since R is free (hence flat), TorR1 (R,M) = 0. By assumption (4), TorR1 (R/I,M) = 0.
Thus, the sequence becomes

0 → I ⊗RM → M → M/IM → 0

which shows that I ⊗RM ∼= IM , as required.

(3) ⇒ (2): Let I ⊆ R be any ideal. We can write I as the direct limit of its finitely
generated subideals: I = lim−→ Iα.
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Since tensor products commute with direct limits, we have:
I ⊗RM = (lim−→ Iα) ⊗RM

∼= lim−→(Iα ⊗RM)
∼= lim−→ IαM (by assumption (3))
= IM

(2) ⇒ (5): The proof of this proposition uses the fact that any module can be built from
modules of the form R/I through direct limits and extensions, and Tor preserves these
constructions.

(5) ⇒ (1): This is the definition of flatness. If TorR1 (M,N) = 0 for all R-modules N ,
then M ⊗R − is exact, which means M is flat.

(1) ⇒ (5): If M is flat, then M ⊗R − is an exact functor, which implies TorR1 (M,N) = 0
for all R-modules N .

Let Sch denote the category of schemes. Before defining the following Grothendieck
topologies (Zariski, étale, fppf, and fpqc), we recall several types of morphisms in algebraic
geometry.

Definition 3.10. Let f : X → Y be a morphism of schemes.

1. f is flat if for every point x ∈ X, the induced map on local rings OY,f(x) → OX,x

makes OX,x into a flat OY,f(x)-module.

2. f is locally of finite presentation if Y can be covered by affine open subsets
Vi = SpecBi such that for each i, f−1(Vi) can be covered by affine open subsets
Uij = SpecAij where each Aij is a finitely presented Bi-algebra.

3. f is locally of finite type if Y can be covered by affine open subsets Vi = SpecBi

such that for each i, f−1(Vi) can be covered by affine open subsets Uij = SpecAij
where each Aij is a finitely generated Bi-algebra.

4. f is quasi-compact if for every quasi-compact open subset V ⊆ Y , the preimage
f−1(V ) is quasi-compact.

5. f is faithfully flat if f is flat and surjective.

6. f is unramified if it is locally of finite presentation and the relative cotangent
sheaf ΩX/Y vanishes.

7. f is étale if it is flat and unramified, or equivalently, if it is flat, locally of finite
presentation, and has relative dimension 0.

8. f is of finite presentation (or a finitely presented morphism) if f is locally
of finite presentation and quasi-compact and quasi-separated (recall that by defini-
tion a morphism of schemes f : X → Y is quasi-separated if the diagonal morphism
is quasi-compact).
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3.3 Zariski Topology

Definition 3.11. The Zariski topology JZar on Sch is defined as follows: A family
of morphisms {fi : Ui → U}i∈I is a Zariski covering if:

1. Each fi is an open immersion.

2. The images of the fi collectively cover U , i.e., ∪i∈Ifi(Ui) = U .

Remark 3.12. The Zariski topology corresponds most closely to the classical notion of
a topological covering and is the coarsest of the four topologies discussed here. For an
affine scheme Spec(R), a standard Zariski covering arises from a set of elements {fi}
generating the unit ideal in R, giving the covering {Spec(Rfi

) → Spec(R)}.

3.4 Étale Topology

Definition 3.13. The étale topology Jét on Sch is defined as follows: A family of
morphisms {fi : Ui → U}i∈I is an étale covering if:

1. Each fi is étale.

2. The family is jointly surjective, i.e., ∪i∈Ifi(Ui) = U .

Proposition 3.14. Let X be a scheme. The following are equivalent for a morphism
f : Y → X:

1. f is étale.

2. f is flat, locally of finite presentation, and for every y ∈ Y , the fiber Yκ(f(y)) is a
disjoint union of spectra of finite separable field extensions of κ(f(y)).

3. f is locally of finite presentation and formally étale, meaning that for every affine
X-scheme Z and every nilpotent closed subscheme Z0 ⊂ Z, the induced map

HomX(Z, Y ) → HomX(Z0, Y )

is bijective.

Example 3.15. If L/K is a finite separable field extension, then Spec(L) → Spec(K)
is an étale morphism. More generally, if R is a ring and S is a finite étale R-algebra,
then Spec(S) → Spec(R) is an étale covering.

3.5 fppf Topology

Definition 3.16. The fppf topology (fidèlement plat et de présentation finie) Jfppf on
Sch is defined as follows: A family of morphisms {fi : Ui → U}i∈I is an fppf covering if:

1. Each fi is flat and locally of finite presentation.

2. The family is jointly surjective, i.e., ∪i∈Ifi(Ui) = U .
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Example 3.17. If R is a ring and p prime, the morphism Spec(R[x]/(xp−a)) → Spec(R)
for a ∈ R is flat and of finite presentation, but generally not étale in characteristic p.

Theorem 3.18 (Grothendieck). Let G be an affine group scheme of finite type over a
scheme S. Then any G-torsor over S is trivial in the fppf topology.

3.6 fpqc Topology

Provides the most general framework for descent theory.

Definition 3.19. The fpqc topology (fidèlement plat et quasi-compact) Jfpqc on Sch
is defined as follows: A family of morphisms {fi : Ui → U}i∈I is an fpqc covering if:

1. Each fi is flat and quasi-compact.

2. The family is jointly surjective, i.e., ∪i∈Ifi(Ui) = U .

Proposition 3.20. Let G be a quasi-compact and quasi-separated group scheme over a
scheme S. If P is a G-torsor over S in the fpqc topology, then P is already a G-torsor
in the fppf topology.

The four topologies form a hierarchy of refinements:

Theorem 3.21. For the category Sch of schemes, the following inclusions hold:

JZar ⊂ Jét ⊂ Jfppf ⊂ Jfpqc

That is, every Zariski covering is an étale covering, every étale covering is an fppf cov-
ering, and every fppf covering is an fpqc covering.

Definition 3.22. Let G be a group scheme over a scheme S, and let X be an S-scheme.
A principal G-bundle over X is an X-scheme P with a right G-action P×SG → P such
that the morphism P → X is locally trivial with respect to a given Grothendieck topology
J on Sch. That is, there exists a covering {Ui → X}i∈I in J such that P×XUi ∼= Ui×SG
as G-schemes over Ui for each i ∈ I.

Proposition 3.23. Let G be a group scheme over a scheme S.

1. If G is smooth over S, then every principal G-bundle that is fppf-locally trivial is
also étale-locally trivial.

2. If G is finite and étale over S, then every principal G-bundle that is étale-locally
trivial is also Zariski-locally trivial.

3. In general, a principal G-bundle that is fpqc-locally trivial is also fppf-locally trivial.
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4 Stacks

Definition 4.1 (Category fibered in groupoids). A category fibered in groupoids over a
category C is a functor p : F → C such that:

1. For every morphism f : U → V in C and every object y ∈ F with p(y) = V , there
exists an object x ∈ F and a morphism ϕ : x → y in F such that p(ϕ) = f .

2. For every pair of morphisms ϕ : x → z and ψ : y → z in F and every morphism
f : p(x) → p(y) in C such that p(ψ) ◦ f = p(ϕ), there exists a unique morphism
χ : x → y in F such that ψ ◦ χ = ϕ and p(χ) = f .

4.1 k-spaces and k-stacks.

Definition 4.2 (k-space, k-group). A k-space (resp. k-group) is a sheaf of sets (resp.
groups) over the big site (Aff /k)fppf.

Definition 4.3 (Lax functor). A lax functor X : Aff /kop → Gpd associates to any
U ∈ ob(Aff /k) a groupoid X (U) and to every arrow f : U ′ → U in Aff /k a functor
f ∗ : X (U) → X (U ′) together with isomorphisms of functors g∗ ◦ f ∗ ≃ (f ◦ g)∗ for
every arrow g : U ′′ → U ′ in Aff /k. These isomorphisms should satisfy the following
compatibility relation: for h : U ′′′ → U ′′ the following diagram commutes:

h∗ ◦ g∗ ◦ f ∗ h∗(f ◦ g)∗

(g ◦ h)∗f ∗ (f ◦ g ◦ h)∗

∼

∼ ∼

∼

If x ∈ ob(X (U)) and f : U ′ → U it is convenient to denote f ∗x ∈ ob(X (U ′)) by x|U ′ .

Definition 4.4. A lax functor is a k-stack if it satisfies the following two topological
properties:

(i) For every U ∈ ob(Aff /k) and all x, y ∈ ob(X (U)) the presheaf

Isom(x, y) : Aff /U → Set, (U ′ → U) 7→ HomX (U ′)(x|U ′ , y|U ′)

is a sheaf (with respect to the fppf topology on Aff /U).

(ii) Every descent datum is effective.

Definition 4.5 (Descent datum, effective descent datum). A descent datum for X
for a covering family {Ui

φi−→ U}i∈I is a system of the form (xi, φji)i,j∈I with the following
properties: each xi is an object of X (Ui), and each φji : xi|Uji

→ xj|Uji
is an arrow in

X (Uji). Moreover, we have the co-cycle condition
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φki|Ukji
= φkj|Ukji

◦ φji|Ukji

where Uji = Uj ×U Ui and Ukji = Uk ×U Uj ×U Ui, for all i, j, k.

A descent datum is effective if there exists an object x ∈ X (U) and invertible arrows
φi : x|Ui

∼−→ xi in X (Ui) for each i such that

φj|Uji
= φji ◦ φi|Uji

for all i, j ∈ I.

Any k-space X may be seen as a k-stack, by considering a set as a groupoid (with the
identity as the only morphism). Conversely, any k-stack X such that X (R) is a discrete
groupoid (i.e., has only the identity as automorphisms) for all affine k-schemes U , is a
k-space.

Definition 4.6 (Morphism of k-stacks). A 1-morphism F : X → Y will associate,
for every U ∈ ob(Aff /k), a functor

F (U) : X (U) → Y(U)

and for every arrow U ′ f−→ U an isomorphism of functors

α(f) : f ∗
X ◦ F (U ′) ∼−→ F (U) ◦ f ∗

Y

satisfying the obvious compatibility conditions:

(i) If f = 1U is an identity, then α(1U) = 1F (U) is an identity.

(ii) If f and g are composable, then F (gf) is the composite of the squares α(f) and α(g),
further composed with the composition of pullback isomorphisms g∗ ◦ f ∗ ≃ (f ◦ g)∗

for X and Y (we will not draw the diagram here).

The structure of this morphism can be visualized in the following commutative diagram:

X (U) Y(U)

X (U ′) Y(U ′)

F (U)

α(f)
f∗

X f∗
Y

F (U ′)

A 2-morphism between 1-morphisms ϕ : F → G associates for every U ∈ ob(Aff /k),
an isomorphism of functors

ϕ(U) : F (U) → G(U)
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represented by the following diagram:

X(U) Y(U)

F (U)

G(U)

ϕ(U) ∥

subject to some compatibility conditions.

Definition 4.7 (Fiber product, representable morphisms). Let F : X → Y be a mor-
phism of k-stacks. The fiber product Xη of X over Y at an object η ∈ Y(U) is the
k-stack defined by the rule

Xη(V ) = X(V ) ×Y(V ) {η|V }

In particular, such an object η can be thought of as a morphism η : U → Y. Then the
fiber of the morphism F over η is precisely the stack X ×Y U .

The morphism F : X → Y is representable if Xη is representable as a scheme for all
U ∈ ob(Aff/k) and all η ∈ obY(U).

We say F has propety P if for every U ∈ ob(Aff/k) and every η ∈ ob(Y (η)) the canonical
morphism (coming from forming the fiber stack as a pullback) of schemes Xη → U has
P . Examples of such properties are flat, smooth, surjective, étale, etc.

Definition 4.8. A k-stack X is algebraic if

(i) the diagonal morphism X → X × X is representable, separated and quasi-compact

(ii) there is a k-scheme P and a smooth, surjective morphism P
p→ X.

Remark 4.9. Given any scheme T with two maps f, g : T → X (representing two
families of objects parameterized by T ), the fiber product:

T ×(X×X) X ∼= IsomT (f, g)

represents the "scheme of isomorphisms" between the objects corresponding to f and g.
The condition that ∆ : X → X × X is representable means that for any scheme T with a
morphism T → X×X, the fiber product T ×X×X X is (represented by) an algebraic space.
This controls the "size" of automorphism groups.

4.2 Examples of algebraic stacks

Definition 4.10. Let G be an algebraic group acting on a scheme X. The action
groupoid X/G is the category whose objects are the points of X and morphisms from x
to y are the elements of G such that gx = y.
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Note that the isomorphism classes of the action groupoid are in bijection with the orbits
of G on X. There is a canonical map X/G → ∗/G which is obvious on the level of
groupoids.

Definition 4.11. We define the quotient stack X/G : Sch → Gpd by

(X/G)(S) = sheafification of the presheaf S 7→ X(S)/G(S)

From the moduli perspective, we have to ask: what family over S is parameterized by
(X/G)(S) for a test scheme S? We can answer this question as follows.

The first thing we notice is that the map X → ∗ should induce a canonical map
X/G → ∗/G. Thus an S-point of S → X/G induces by composition an S-point S → ∗/G;
i.e., a G-torsor P over S.

Now, say we have a G-torsor P over S. We can form the fiber product:

X ×G P X/G

S ∗/GP

We call the stack X ×G P the X-bundle associated to P , or the associated bundle of P
with fiber X. In particular, there is the following correspondence:

Proposition 4.12. There is a canonical bijection between:

1. Maps from a scheme S to the quotient stack X/G

2. Sections of the associated bundle S → X ×G P

3. G-equivariant maps from P to X

where P is the principal G-bundle on S corresponding to S → X/G → ∗/G.

Proof. A map f : S → X/G of stacks corresponds to a principal G-bundle P on S
together with a G-equivariant map ϕ : P → X. Given a G-equivariant map ϕ : P → X,
we can construct a section σ : S → X ×G P of the associated bundle as follows:

For each point s ∈ S, define σ(s) = [ϕ(p), p] where p is any point in the fiber Ps and
[ϕ(p), p] denotes the equivalence class in X ×G P . The G-equivariance of ϕ ensures this
is well-defined regardless of which p ∈ Ps we choose.

Conversely, given a section σ : S → X ×G P where σ(s) = [xs, ps] for each s ∈ S, we can
define a G-equivariant map ϕ : P → X as follows:

For any p ∈ P with p ∈ Ps for some s ∈ S, we have p = ps · g for some g ∈ G. We define
ϕ(p) = g−1 · xs. The properties of the associated bundle ensure this is well-defined and
G-equivariant.
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This motivates the following definition:

Definition 4.13. Let an algebraic group G act on a scheme X. Then the quotient
stack X/G is the functor Sch → Gpd given by

(X/G)(S) = Groupoid of principal G-torsors P over S with a G-equivariant map P → X.

Example 4.14. If Z is a k-scheme and H is a linear algebraic group over k acting on
Z, then the quotient stack [Z/H] is an algebraic stack. A presentation is given by the
trivial H-bundle p : Z → [Z/H].

Example 4.15. Let X be a projective connected smooth curve over k. The moduli
problem MG,X which associated to a scheme S the groupoid of principal G-bundles over
X × S is an algebraic stack.

MG,X(S) : Sch /kop → Gpd
S 7→ {principal G-bundles over X × S} + isomorphisms

Proposition 4.16. If G is reductive, the algebraic stack MG,X is smooth, dimension
dimG(g − 1).

5 Uniformization

The theory of uniformization relates these moduli spaces to loop groups and associated
Grassmannians. We introduce the uniformization of moduli stacks of principal G-bundles,
beginning with the topological perspective and transitioning to the algebraic setting.

5.1 Topological loop groups

LetX be a smooth projective curve over k. LetG connected reductive. Then isomorphism
classes of topological principal G-bundles over X are in bijection with elements of π1(G).

To see this, consider a basepoint x ∈ X and a disk D around x. Then the restriction of a
principal G-bundle P to D is trivial because D is contractible. Let X∗ = X\{x}. Then
U is homotopy equivalent to a wedge of circles and therefore any topological principal
G-bundle over U is also trivial. This is because of the general theory of obstruction theory
for CW complexes.

In general, given a CW complex X and a map from the i-skeleton X i → Y , the obstruc-
tion to extending this map to the (i + 1)-skeleton lies in the cellular cohomology group
H i+1(X ,πi(Y )). We also make use of the fact that a topological principal G-bundle P
over a space X is trivial if and only if it admits a global section. In particular, to trivi-
alize a principal G-bundle over X is precisely to specify a map X → G. Therefore, the
obstruction to lifting a map X∗0 → G to X∗1 → G lies in the group H1(U, π0(G)) but
π0(G) = e so this group is trivial. Therefore, all topological principal G-bundle over U
are trivial.
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Another way to see this is using the theory of classifying spaces. Prinicipal G-bundles over
X∗ are classified by homotopy classes of maps X∗ → BG. By the cellular approximation
theorem, any map X∗ → BG can be homotoped to a map X∗ → BG1 where BG1 is the
1-skeleton of BG. But BG carries a cell structure with cells in only even dimensions, so
such homotopy classes of maps amount to picking a connected component of BG. But
BG is connected because G is connected. Therefore, all principal G-bundles over U are
trivial.

Return to X. The only data that is important, since the bundle is trivial over X∗ and
D, is the transition function gX∗D ∈ G. This amounts to a map D∗ = D\{x} → G. But
D∗ is homotopy equivalent to a circle, so this map is classified by an element of π1(G).
Therefore, the isomorphism classes of principal G-bundles over X are in bijection with
π1(G).

We recast the argument given above:

Definition 5.1. We have the following groups:

LtopG = {continuous maps D∗ → G}
Ltop+ G = {continuous maps D → G}
LtopX G = {continuous maps X∗ → G}

and natural inclusions Ltop+ G → LtopG and LtopX G → LtopG.

Proposition 5.2. There is a canonical bijection

LtopX G\LtopG/Ltop+ G ∼= Mtop
G,X

∼= π1(G)

Proof. One thinks of the space

LtopG = {E, σ, τ}

of triples where E → X is a principalG bundle and σ : E|D ∼= D×G and τ : E|X∗ ∼= X∗×G
are choices of trivializations. Then one divides out by the choice of trivializations.

5.2 Algebraic loop groups

The algebraic analagoue of a neighborhood homeomorphic to x is given by looking at the
completion of the local ring OX,x.

Dx = Spec ˆOX,x

Choosing a local coordinate z near x gives the idenitfication

Dx = Spec k[[z]]

The punctured disk is the field of fractions Kx of the completion of the local ring

D∗
x = SpecKx

∼= Spec k((z))
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Introduce the notation U = SpecR, D∗
U = SpecR((z)) and DU = SpecR[[z]] and

X∗
U = X∗ × U .

The algebraic analogue of the topological loop group LtopG is the group scheme

LG = Homalg(D∗, G)

the points of G with values in D∗, i.e. G(k((z))).

Definition 5.3. We have the functor of points for algebraic loop groups

LG : Aff /k → Grp
LG(U) = Homalg(D∗

U , G) = G(R((z)))

and the analagous k-groups

L+G(U) = Homalg(DU , G) = G(R[[z]])
LXG(U) = Homalg(X∗

U , G) = G(OX∗
U
)

The quotient space QG = LG/L+G is the sheafification of the presheaf

U 7→ LG(U)/L+G(U)

carries an action of LXG.

Consider the quotient stack [LXG\QG].

Theorem 5.4 (Uniformization). Let G semisimple. Then there is a canonical isomor-
phism of stacks

[LXG\QG] ∼= MG,X

Moreover the LXG-bundle QG → MG,X is even locally trivial for the etale topology if the
characteristic of k does not divide the order of π1(G(C)).

We consider triples (E, ρ, σ) where E is a vector bundle on XR, ρ : Or
X∗

R
−→ E|X∗

R
a

trivialization of E over X∗
R, σ : Or

DR
−→ E|DR

a trivialization of E over DR. We let
T(R) be the set of isomorphism classes of triples (E, ρ, σ) (with the obvious notion of
isomorphism).

Proposition 5.5. The ind-group GLr(K) represents the functor T.

Proposition 5.6. The ind-group SLr(K) represents the subfunctor T0 of T which as-
sociates to a k-algebra R the set of isomorphism classes of triples (E, ρ, σ) where E is a
vector bundle on XR, ρ : Or

X∗
R

−→ E|X∗
R

and σ : Or
DR

−→ E|DR are isomorphisms such
that ∧rρ and ∧rσ coincide over D∗

R.
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Remark 5.7. The condition that the trivializations ∧rρ and ∧rσ coincide over D∗
R

means that they come from a global trivialization of ∧rE. So we can rephrase by saying
that T0(R) is the set of isomorphism classes of data (E, ρ, σ, δ) where δ is a trivialization
of ∧rE, ρ and σ are trivializations of E|X∗

R
and E|DR, respectively, such that ∧rρ coincide

with δ|X∗
R

and ∧rσ with δ|DR.

Corollary 5.8. Let us denote by AX the affine algebra Γ(X−p,OX). There is a canon-
ical bijective correspondence between the set of isomorphism classes of rank r vector bun-
dles on X with trivial determinant (resp. with determinant of the form OX(np) for some
integer n) and the double coset space SLr(AX)\SLr(K)/SLr(O) (resp. GLr(AX)\GLr(K)/GLr(O)).

Proof. Since two trivializations of E|D differ by an element of GLr(O), and two trivial-
izations of E|X∗ by an element of GLr(AX), bijection between GLr(AX)\GLr(K)/GLr(O)
and the set of isomorphism classes of rank r vector bundles on X which are trivial on X∗.
But a projective module over a Dedekind ring is free if and only if its determinant is free,
hence our assertion for GLr. The same proof applies for SLr.

Remark 5.9. Note that saying that a line bundle is trivial on the open complement
X∗ = X − p is equivalent to saying that it is of the form OX(np) for some integer n.
This follows from the exact sequence

Z → Pic(X) → Pic(X∗) → 0

where the first map sends 1 7→ OX(p).

Lemma 5.10. Let G be any semisimple group. Given a principal G-bundle E, and
any representation ρ : G → GL(V ), the contracted product E = E ×G V has trivial
determinant.

Proof. To see that det(E) is trivial, we note that since G is semisimple, [G,G] = G, and
so the image ρ(G) is contained in the kernel of the determinant map which is SL(V ).
This is because ρ preserves commutator subgroups and [GLn,GLn] ⊂ SLn.

In particular, E has transition functions given by matrices with trivial determinant.
These are the transition functions of the line bundle det(E), and so det(E) is necessarily
trivial.

5.3 As a moduli stack

In the last section, we described a bijection between the set of isomorphism classes
of rnak r vector bundles on X with trivial determinant and the double coset space
SLr(AX)\ SLr(K)/ SLr(O) by considering triples (E, σ, τ) corresponding to vector bun-
dles E along with choices of trivializations over the open complement of a point, and the
unit disk respectively. This in fact gives a description of the moduli stack. This section
is about understanding the algebraic structure of the stack SLr(AX)\ SLr(K)/ SLr(O).

We begin with result about the infinite Grassmannian.
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Proposition 5.11. The k-space Q := SLr(K)/SLr(O) represents the functor which
associates to a k-algebra R the set of isomorphism classes of pairs (E, ρ), where E is a
vector bundle over XR and ρ a trivialization of E over X∗

R such that ∧rρ extends to a
trivialization of ∧rE.

Proof. A standard proof using descent. Let R be a k-algebra and q an element of Q(R).
By definition there exists a faithfully flat homomorphism R → R′ and an element γ of
SLr(R′((z))) such that the image of q in Q(R′) is the class of γ. Effective, we are checking
that the proposition holds for an fppf covering of R, and then it will necessarily hold for
R by descent.

To γ corresponds a triple (E ′, ρ′, σ′) over XR′ . Let R′′ = R′⊗RR
′, and let (E ′′

1 , ρ
′′
1), (E ′′

2 , ρ
′′
2)

denote the pull-backs of (E ′, ρ′) by the two projections of XR′′ onto XR′ . Since the
two images of γ in SLr(R′′((z))) differ by an element of SLr(R′′[[z]]), these pairs are
isomorphic; this means that the isomorphism ρ′′

2ρ
′′−1
1 over X∗

R′′ extends to an isomorphism
u : E ′′

1 → E ′′
2 over XR′′ . This isomorphism satisfies the usual cocycle condition, because

it is enough to check it over X∗, where it is obvious. Therefore (E ′, ρ′) descends to a pair
(E, ρ) on XR as in the statement of the proposition.

Conversely, given a pair (E, ρ) as above over XR, we can find a faithfully flat homomor-
phism R → R′ and a trivialization σ′ of the pull back of E over DR′ such that ∧rσ′

coincides with ∧rρ over D∗
R′ (in fact Spec(R) is covered by open subsets Spec(Rα) such

that E is trivial over DRα , and we can take R′ = ∏
Rα). By prop. 1.5 we get an element

γ′ of SLr(R′((z))) such that the two images of γ′ in SLr(R′′((z))) (with R′′ = R′ ⊗R R
′)

differ by an element of SLr(R′′[[z]]); this gives an element of Q(R). The two constructions
are clearly inverse one of each other.

5.4 As a Grassmannian of lattices

For any k-algebra R define lattice in R((z))r as a sub-R[[z]] module W of R((z)) which
is projective of rank R and so that ∪z−nW = R((z))r. In particular this implies that

z−NR[[z]] ⊂ W ⊂ zNR[[z]]

for some integer N , and so that the R-module W/zNR[[z]]r is projective. Moreover we
say that the lattice W is special if the projective R-module W/zNR[[z]] is of rank Nr.
This is equivalent to saying that the determinant ΛrW is trivial = R[[z]].

Proposition 5.12. The k-space Q (resp. GLr(K)/GLr(O)) represents the functor
which associates to a k-algebra R the set of special lattices (resp. of lattices) W ⊂ R((z))r.
The group SLr(K) acts on Q by (γ,W) 7→ γW (for γ ∈ GLr(R((z))), W ⊂ R((z))r).

D∗ D

X∗ X

Proof. Consider the diagram where for simplicity we have dropped the suffix R. Let us
start with a pair (E, ρ) overX. The trivialization ρ gives an isomorphismR((z))r −→ H0(D∗, E|D∗);
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the inverse image W of H0(D,E|D) is a lattice in R((z))r, and it is a special lattice if
∧rρ extends to a trivialization of ∧rE over X.

Conversely, given a lattice W in R((z))r, we define a vector bundle EW on X by gluing
the trivial bundle over X∗ with the bundle on D associated to the R[[z]]-module W ; the
gluing isomorphism is the map W ⊗R[[z]] R((z)) −→ R((z))r induced by the embedding
W ↪→ R((z))r. By definition EW has a natural trivialization ρW over X∗, and if W is
a special lattice ∧rρ extends to a trivialization of ∧rE over X. It is easy to check that
these two constructions are inverse one of each other.

Let γ be an element of GLr(R((z))), corresponding to a triple (E, ρ, σ). By construction
the corresponding lattice is ρ−1σ(R[[z]]r) = γ(R[[z]]r).

Recall that we have denoted by S(N) the subscheme of SLr(K) parametrizing matrices
A(z) such that A(z) and A(z)−1 have a pole of order ≤ N ; it is stable under right
multiplication by S(0) = SLr(O). We will denote by Q(N) its image in Q, i.e. the
quotient k-space S(N)/S(0).

Corollary 5.13. Let FN be a free module of rank r over the ring k[z]/(z2N) (so that
FN is a k-vector space of dimension 2rN). The k-space Q(N) = S(N)/S(0) is isomorphic
to the (projective) variety of rN-dimensional subspaces G of FN such that zG ⊂ G.

Recall that we have denoted by SLr(O−) the subgroup of SLr(k[z−1]) parametrizing
matrices ∑n≥0 Anz

−n with A0 = I. It is an ind-variety.

Theorem 5.14. The k-space Q = SLr(K)/SLr(O) is an ind-variety, direct limit of
the system of projective varieties (Q(N))N≥0. It is covered by open subsets which are
isomorphic to SLr(O−), and over which the fibration p : SLr(K) −→ Q is trivial.

Proposition 5.15. Let ω be the class of the identity I in Q.

1. The orbits of SLr(O) in Q are the orbits of the points zdω where d runs through the
sequences d1 ≤ d2 ≤ · · · ≤ dr and ∑ di = 0.

2. The orbit of zd′
ω is in the closure of zdω if and only if d′ ≥ d in dominance order,

i.e. the pth partial sum of d′ is greater than or equal to the pth partial sum of d for
all p.

Proof. We have the formula(
t−1z t−1

−t 0

)(
zd1 0
0 zd2

)(
t −t−1zd2−d1−1

0 t−1

)
=
(
zd1+1 0

−t2zd2 zd2−1

)

and take the limit as t → 0.
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5.5 The moduli stack SLr(AX)\ SLr(K)/ SLr(O)

Recall that a stack over k associates to any k-algebra R a groupoid F (R), and to any
morphism of k-algebras u : R → R′ a functor F (u) : F (R) → F (R′). This data should
satisfy some compatibility conditions and as well as some localization properties.

Example 5.16. The moduli stack GLX(r) of rank r vector bundles on X is defined by
associating to a k-algebra R the groupoid of rank r vector bundles over XR. Similarly,
one defines a stack SLX(r) by associating to R the groupoid of pairs (E, δ), where E is
a vector bundle over XR and δ : OXR

→ ∧r E an isomorphism; this is the fibre over the
trivial bundle of the morphism of stacks det : GLX(r) → GLX(1).

Definition 5.17. A Γ-torsor over R (in the fppf site) is a k-space P over R with an
action of ΓR which after a faithfully flat extension R → R′ becomes isomorphic to ΓR′

acting on itself by multiplication.

Example 5.18. Let Q be a k-space, and Γ a k-group acting on Q. The quotient stack
Γ\Q is defined in the following way: an object of F (R) is a Γ-torsor P over SpecR
together with a Γ-equivariant morphism α : P → Q; arrows in F (R) are defined in the
obvious way, and so are the functors F (u). The stack Γ\Q is indeed the quotient of Q by
Γ in the category of stacks, in the sense that any Γ-invariant morphism from Q into a
stack F factors through Γ\Q in a unique way. If Γ acts freely on Q (i.e. Γ(R) acts freely
on Q(R) for each k-algebra R), then the stack Γ\Q is a k-space.

When Q = Spec(k) (with the trivial action), Γ\Q is the classifying stack BΓ: for each
k-algebra R, BΓ(R) is the groupoid of Γ-torsors over Spec(R).

Proposition 5.19. The quotient stack SLr(AX)\ SLr(K)/ SLr(O) is canonically iso-
morphic to the algebraic stack SLX(r) of vector bundles on X with trivial determinant.
The projection map π : SLr(K)/ SLr(O) −→ SLr(X) is locally trivial for the Zariski
topology.

Example 5.20 (Determinant line bundle). Let T be a scheme, and E a vector bundle
on X × T . The derived direct image R(prT )∗(E) is given by a complex of vector bundles
L0 → L1.

This is a complex which represents the higher direct image sheaves in the derived category,
i.e. pass to a resolution of E and take the pushforward. Since X has dimension 1, we
can represent this complex by a two term complex of vector bundles L0 → L1.

The line bundle det(L1) ⊗ det(L0)−1 is independent of the choice of this complex, hence
canonically defined on T ; this is the "determinant of the cohomology" detRΓT (E). The
important thing to note here is that in the derived category, quasi-isomorphisms need
not induce the same isomorphisms on cohomology. But they do induce the same iso-
morphism on determinants of cohomology. This is precisely the compatilibity we need
to define the determinant line bundle for stacks, in particular we need to know that
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given quasi-isomorphic three complexes K∗, L∗,M∗, the composition of isomorphisms
detK∗ → detL∗ → detM∗ is the same as the isomorphism detK∗ → detM∗.

Associating to each bundle E on X × T the line bundle detRΓT (E) defines a line bundle
L on the stack SLX(r) (or GLX(r)), the determinant line bundle.

6 The central extension

Recall that there is a canonical map of stacks π : Q = SLr(K)/ SLr(O) → SLX(r). Let
L be the determinant line bundle on SLX(r). We are interested in relating the following
central extension construction to the determinant bundle on the moduli stack.

6.1 Fredholm group

Let V be an infinite dimensional vector space over k. Let Endf (V ) denote the two sided
ideal generated by the finite rank endomorphisms of V , and let F(V ) = (End(V )/Endf (V ))∗

be the equivalence classes of endomorphisms with finite dimensional kernel and cokernel.
Let F(V )0 denote the subgroup of index 0 endomorphisms.

The map Aut(V ) ↪→ End(V ) → F(V ) has image precisely F(V )0, and its kernel is those
automorphisms u ∈ Aut(V ) so that u− I ∈ Endf (V ). The determinant of such u is well
defined by the formula

det(u) = det(I + v) =
∑
n≥0

tr Λnv

so there is a short exact sequence

0 → I + Endf (V ) → Aut(V ) → F(V )0 → 0

Let (I + Endf (V ))1 denote those automorphisms u such that det(u) = 1. We get a short
exact sequence

0 → k∗ → Aut(V )/(I + Endf (V ))1 → F(V )0 → 0

For v ∈ Endf (V ), u ∈ Aut(V ), we have

det(I + uvu−1) = det(I + v)

so det(I+v) is invariant under conjugation and I+v is in the center of Aut(V )/(I+Endf (V ))1.
Thus we have defined a caonical central extension of the group F(V )0 by k∗.

6.2 Algebraic setting

Consider the k-space End(V )(R) = EndR(V ⊗k R), and has the k-group Aut(V ) as
its group of units. An endomorphism of V ⊗ R has finite rank if its image is con-
tained in a finitely generated submodule, denote these endomorphisms Endf (V ) and take
F(V ) = (End(V )/Endf (V ))∗. The group F(V )0 is defined as the image of Aut(V ) in
F(V ). Then again there is a central extension

0 → Gm → Aut(V )/(I + Endf (V ))1 → F(V )0 → 0
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Now consider the ind-group GLr(K). Choose a supplement Kr = V ⊕ Or giving rise to
a direct sum decomposition

R((z))r = V ⊕R[[z]]r

Let γ ∈ GLr(R((z))) be a matrix with entries in R((z)) and decompose

γ =
(
a(γ) b(γ)
c(γ) d(γ)

)

so a(γ) : VR → VR and consider the class ā(γ) ∈ End(VR)/Endf (VR).

Proposition 6.1. The map

γ 7→ ā(γ)

is a group homomorphism

GLr(R((z))) → F(VR)

Another choice of supplement V ′ gives rise to ā′ : GLr(R((z))) → F(V ′
R). Let ϕ : V → V ′

be the map V → R((z))r → V ′. Then ā′(γ) = ϕ ◦ ā(γ) ◦ ϕ−1.

Proposition 6.2. Let R be a k-algebra and γ an element of SLr(R((z))); locally on
Spec(R) (for the Zariski topology), the endomorphism a(γ) of VR is equivalent modulo
Endf (VR) to an automorphism.

It is enough to prove the result for one particular choice of V ; we’ll take V = (z−1k[z−1])r.
The assertion is clear when γ belongs to SLr(R[[z]]) or to SLr(R[z−1]): in those cases
the matrix (4.2) is triangular, so that a(γ) itself is an isomorphism. The result then
follows when R is a field, since any matrix γ ∈ SLr(R((z))) can be written as a product
of elementary matrices I + λEij, where λ can be taken either in R[[z]] or in R[z−1]. The
general case is a consequence of the following lemma:

Lemma 6.3. Locally over Spec(R), any element γ of SLr(R((z))) can be written γ0γ
−γ+,

with γ0 ∈ SLr(K), γ− ∈ SLr(R[z−1]), γ+ ∈ SLr(R[[z]]).

Let us assume first that the k-algebra R is finitely generated. Let t be a closed point of
Spec(R); put γ0 = γ(t). By (1.12) γ−1

0 γ can be written in a neighborhood of t as γ−γ+,
hence the result in this case.

In the general case, R is the union of its finitely generated subalgebras Rα. Let

p : SLr(K) −→ Q = SLr(K)/SLr(O)

be the quotient map. Since Q is an ind-variety, the morphism p◦γ : Spec(R) → Q factors
through Spec(Rα) for some α. Locally over Spec(Rα), this morphism can be written p◦γα
for some element γα of SLr(Rα((z))), which differs from γ by an element of SLr(R[[z]])
(thm. 2.5). Since Rα is of finite type, the lemma holds for γα, hence also for γ.
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Corollary 6.4. The image of SLr(K) by ā is contained in the subgroup F(V )0.

Take the pullback of the central extension

0 → Gm → Aut(V )/(I + Endf (V ))1 → F(V )0 → 0

by ā so that we get

0 → Gm → ŜLr(K) → SLr(K) → 0

where ŜLr(K) is the central extension of SLr(K) by Gm. It is also an ind-group.

Explicitly, an element of SLr(K)(R) is given, locally on SpecR, by a pair (γ, u) with γ
in SLr(R((z))), u in Aut(VR), and u ≡ a(γ) mod Endf (VR). Two pairs (γ, u) and (γ′, u′)
give the same element of ŜLr(K)(R) if u−1u′ (which is in I + Endf (VR)) has determinant
1. The map

ψ : ŜLr(K)(R) −→ SLr(K)(R)

is given by ψ(γ, u) = γ. The kernel of ψ consists of the pairs (I, u) with u ∈ Aut(VR),
modulo the pairs (I, u) with detu = 1; the map u 7→ detu provides an isomorphism from
kerψ onto Gm(R).

Remark 6.5. The interpretation of the central extension is as follows. Consider what
happens when γ ∈ SLr(R((z))) acts on VR. The action a(γ) is given by embedding VR into
R((z))r, and then applying the matrix γ and projecting back to VR. This map determined
by γ fails to be an automorphism, but we showed that if we perturb it by a finite rank
endomorphism, we can get an automorphism. However we can get different automor-
phisms, and the central extension carries around the data of the particular automorphism
we choose to represent the element γ. Two automorphisms are equivalent precisely when
det(u−1u′) = 1 which makes a Gm-torsor.

Remark 6.6. Let H be a sub-k-group of SLr(K) such that Or (resp. V ) is stable under
H. Then the extension (E) is canonically split over H. For any element γ ∈ H(R), we
have b(γ) = 0 (resp. c(γ) = 0), so that the map γ 7→ a(γ) is a homomorphism from H(R)
into Aut(VR). The map γ 7→ (γ, a(γ)) defines a section of ψ over H. In particular, the
pullback ŜLr(O) of SLr(O) is canonically isomorphic to SLr(O) × Gm.

We denote by χ0 : ŜLr(O) → Gm the second projection. If an element δ̃ ∈ ŜLr(O)(R) is
represented by a pair (δ, v), then

χ0(δ̃) = det(a(δ)−1v).

More generally, suppose there exists an element λ ∈ SLr(K) such that the subgroup H
preserves the subspace λ(Or) (resp. λ(V )). Choose an automorphism u of V such that
u ≡ a(λ) (mod Endf (V )), and define a section of ψ over H by

γ 7→ (γ, ua(λ−1γλ)u−1).

This section is independent of the choice of u, so once again the group H embeds canon-
ically into ŜLr(K).
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Let γ̃ an element of ŜLr(K)(R). Locally on Spec(R) write γ̃ = (γ, u) with γ in SLr(R((z))),
u ∈ Aut(VR), and u ≡ a(γ) (mod Endf (VR)). We associate to this pair the element

τV (γ, u) := det(ua(γ−1))

of R. This is clearly well-defined, so we get an algebraic function τV on ŜLr(K).

Proposition 6.7. Let R be a k-algebra, γ̃ an element of ŜLr(K)(R), γ its image in
SLr(R((z))). One has

τV (γ̃δ̃) = χ0(δ̃)τV (γ̃)

for all δ̃ in ŜLr(O)(R).

Proof. Let us choose representatives (γ, u) of γ̃ and (δ, v) of δ̃. Since b(δ−1) = 0, one has

a(δ−1γγ−1) = a(δ−1)a(γ−1),

and

τV (γ̃δ̃) = det(uva(δ−1)a(γ−1)) = det(va(δ−1)) det(ua(γ−1)) = χ0(δ̃)τV (γ̃).

as claimed.

Let us denote by χ the character χ−1
0 of ŜLr(O). The function τV thus defines a section

of the line bundle Lχ on the ind-variety

Q = ŜLr(K)/ŜLr(O)

More generally, let δ ∈ SLr(K), and let δ̃ be a lift of δ in ŜLr(K); the function

γ̃ 7→ τV (δ̃−1γ̃)

still defines an element of H0(Q,Lχ), whose divisor is δ(div(τV )).

6.3 The determinant bundle

We will now compare the pullback over Q of the determinant line bundle L on the moduli
stack with the line bundle Lχ.

Proposition 6.8. Let R be a k-algebra, γ an element of GLr(R((z))), and (E, ρ, σ) the
corresponding triple over XR. There is a canonical exact sequence

0 → H0(XR, E) → ArX ⊗k R → (R((z))/R[[z]])r → H1(XR, E) → 0

where γ : ArX⊗kR → (R((z))/R[[z]])r is the composition of the injection ArX⊗kR → R((z))r,
the automorphism γ−1 of R((z))r, and the projection R((z))r → (R((z))/R[[z]])r.

Proof. Recall that there is a short exact sequence

0 → OX → j∗OX∗ → f∗(KD/OD) → 0
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where j : X∗ → X and f : D → X is the inclusion. The term j∗OX∗ represents those
sections of OX which are regular on X∗. The term KD/OD represents the quotient of
Laurent series by regular functions, and then we push it forward to X. The exact sequence
says that a function on X∗ comes from a function on X precisely when it has no poles
along D. Tensoring with E and using our trivializations ρ, σ we get an exact sequence
(tensoring with E is exact because E is locally free)

0 → E → j∗OX∗ → f∗(KD/OD) → 0

Now take the long exact sequence in cohomology.

Choose an element γ0 ∈ GLr(K) so that γ̄0 : ArX → (K/O)r is an isomorphism, i.e.
so that E has no cohomology, i.e. so that V = γ−1

0 (ArX) is a supplement of Or in Kr.
Identifying ArX with V and the quotient map Kr → Kr/Or with the projection of Kr

onto V , we obtain that γ̄ is the composition of the mappings

V → Kr γ−1γ0−−−→ Kr → V

so that γ̄ is the coefficient a(γ−1γ0) of the matrix γ−1γ0 in the decompositionKr = V ⊕Or.

Therefore we have shown the following.

Proposition 6.9. Let γ ∈ GLr(R((z))), and let E be the associated vector bundle over
XR. There is a canonical exact sequence:

0 → H0(XR, E) → VR
a(γ−1γ0)−−−−−→ VR → H1(XR, E) → 0.

Corollary 6.10. Assume that there exists an automorphism u of VR such that u ≡ a(γ−1
0 γ)

(mod Endf (VR)). Then there is an exact sequence:

0 → H0(XR, E) → V0
v0−→ V0 → H1(XR, E) → 0,

where V0 is a free finitely generated R-module, and det(v0) = τV (γ−1
0 γ, u).

Proof. Let v = u · a(γ−1γ0) ∈ I + Endf (VR), and let V0 be a free finitely generated direct
factor of VR containing Im(v− I). Denote by v0 the restriction of v to V0. The matrix of
v relative to a direct sum decomposition VR = V0 ⊕ V1 is of the form:(

v0 ∗
0 I

)
,

from which it follows that det v0 = det v = τV (γ−1
0 γ, u). It also follows that ker v0 = ker v,

and the inclusion V0 ↪→ VR induces an isomorphism Coker v0 ∼= Coker v.

Remark 6.11. One can think of the map τV (γ−1
0 γ, u) as a determinant associated with

the difference between two ways of representing the action of γ−1
0 γ on VR. Specfically,

when we have u ≡ a(γ−1
0 γ) (mod Endf (VR)), the difference u − a(γ−1

0 γ) is a finite rank
endomorphism of VR, and the determinant det(u − a(γ−1

0 γ)) is well defined. The map
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τV is a way of encoding this information in a more algebraic form, and it allows us to
compare different representations of the same action.

The corollary says that we can "finitize" the cohomology computaiton to a finite-dimensional
submodule V0, and this localized computation preserves the key determinant information.

7 Appendix: Morphisms of Schemes

Other notions for morphisms of schemes that we will not need, but still worth mentioning
and defining.

Definition 7.1. Let f : X → Y be a morphism of schemes.

1. f is affine if for every affine open subset V = Spec(B) ⊂ Y , the preimage f−1(V )
is affine. Equivalently, there exists an affine open cover {Vi} of Y such that f−1(Vi)
is affine for each i.

2. f : X → Y is finite if for every affine open subset V = Spec(B) ⊂ Y , the preimage
f−1(V ) = Spec(A) where A is a finite B-algebra (i.e., A is finitely generated as a
B-module).

3. f is of finite type if it is locally of finite type and quasi-compact.

4. f is quasicompact if for every quasi-compact open subset V ⊂ Y , the preimage
f−1(V ) is quasi-compact.

5. f : X → Y is separated if the diagonal morphism ∆f : X → X ×Y X is a closed
immersion.

6. f : X → Y is quasi-separated if the diagonal morphism ∆f : X → X ×Y X is
quasi-compact.

7. f : X → Y is proper if it is separated, of finite type, and universally closed (the
image of a closed subset remains closed after any base change).

8. f : X → Y is unramified at a point x ∈ X if:

(a) The extension of residue fields κ(x)/κ(f(x)) is finite and separable.

(b) The cotangent space of the fiber at x, mf(x)OX,x/m
2
f(x)OX,x, vanishes.

It is unramified if it is unramified at every point of X.

9. A morphism f : X → Y is formally smooth (resp. formally unramified,
formally étale) if for every affine Y -scheme Y ′ → Y and every closed immersion
Y ′

0 → Y ′ defined by a nilpotent ideal, the map

HomY (Y ′, X) → HomY (Y ′
0 , X)

is surjective (resp. injective, bijective).
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10. A morphism f : X → Y is smooth (resp. unramified, étale) if it is formally
smooth (resp. formally unramified, formally étale) and locally of finite presentation.

11. A morphism f : X → Y is smooth of relative dimension n if it is flat, locally of
finite presentation, and for each point x ∈ X, the fiber Xf(x) is a smooth variety of
dimension n over κ(f(x)).

12. A morphism f : X → Y is an open immersion if it induces a homeomorphism
of X onto an open subset of Y and the induced map f ♯ : OY |f(X) → f∗OX is an
isomorphism.

13. A morphism f : X → Y is a closed immersion if it induces a homeomorphism
of X onto a closed subset of Y and the induced map f ♯ : OY → f∗OX is surjective.

14. A morphism f : X → Y is quasi-finite at a point x ∈ X if there exist open
neighborhoods U of x and V of f(x) such that f |U : U → V has finite fibers. It is
quasi-finite if it is quasi-finite at every point of X.

Theorem 7.2. For a morphism of schemes f : X → Y , the following are equivalent:

1. f is formally smooth and locally of finite presentation.

2. f is flat, locally of finite presentation, and has geometrically regular fibers.

Proof. We will prove both implications to establish the equivalence.

(1) ⇒ (2): Assume f is formally smooth and locally of finite presentation.

We need to establish that f is flat and has geometrically regular fibers.

Step 1: Proving flatness.

Let x ∈ X be a point and y = f(x) ∈ Y . We need to show that OX,x is flat as an
OY,y-module. By standard criteria for flatness, it suffices to show that for every finitely
generated ideal I ⊂ OY,y, the natural map

φ : I ⊗OY,y
OX,x → IOX,x (5)

is an isomorphism, or equivalently, that TorOY,y

1 (OY,y/I,OX,x) = 0.

Since f is formally smooth, by definition, for every affine Y -scheme Y ′, every closed
subscheme Y ′

0 ⊂ Y ′ defined by a nilpotent ideal J , and every Y -morphism g0 : Y ′
0 → X,

there exists a Y -morphism g : Y ′ → X extending g0.

For our purposes, we consider the specific case where:

Y ′ = Spec(OY,y/I
2) (6)

Y ′
0 = Spec(OY,y/I) (7)
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The ideal J = I/I2 is nilpotent in OY,y/I
2 with J2 = 0.

The obstruction to lifting g0 : Y ′
0 → X to g : Y ′ → X lies in

Ext1
OY ′

0
(g∗

0LX/Y , I/I
2) (8)

where LX/Y is the cotangent complex of f .

Since f is formally smooth, this obstruction vanishes for all possible g0. Moreover, as f
is locally of finite presentation, the cotangent complex LX/Y is perfect and concentrated
in degrees [−1, 0].

By deformation theory, there is a connection between these Ext groups and the Tor
groups relevant to flatness. Specifically, the vanishing of the obstruction for all g0 implies
that

TorOY,y

1 (OY,y/I,OX,x) = 0 (9)

This connection is established through the local-to-global spectral sequence relating Ext
groups of the cotangent complex to appropriate Tor groups. For a formally smooth
morphism, the cotangent complex is quasi-isomorphic to the module of differentials placed
in degree 0, which simplifies these relationships.

As this holds for all finitely generated ideals I ⊂ OY,y, we conclude that OX,x is flat over
OY,y. Since this applies to all points x ∈ X, the morphism f is flat.

I am not confident in the truth of what is written here. It is also not complete.

Remark 7.3 (Properties of morphisms). The following properties of morphisms of
schemes are related in the following way:

1. finite ⇒ proper ⇒ separated

2. finite ⇒ affine ⇒ quasi-affine

3. finite ⇒ quasi-finite

4. étale ⇒ smooth ⇒ flat

5. étale ⇒ unramified

6. locally of finite presentation ⇒ locally of finite type

7. proper + flat + finite type + locally of finite presentation ⇒ cohomologically flat

Properties preserved under composition include: affine, finite, (locally) of finite type,
(locally) of finite presentation, quasi-compact, separated, proper, closed immersion, and
flat.
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Properties preserved under base change include: affine, finite, (locally) of finite type,
(locally) of finite presentation, flat, unramified, étale, smooth, open immersion, closed
immersion, and proper.

8 Appendix: Associated Bundles

Let G be a group scheme and let P → X be a principal G-bundle over a scheme X.
Suppose we have a scheme F equipped with a (left) G-action. We can construct the
associated bundle with fiber F , denoted P ×G F , as follows.

Consider the product P ×F with the diagonal G-action given by g · (p, f) = (p ·g−1, g ·f)
for g ∈ G, p ∈ P , and f ∈ F . The associated bundle P ×G F is defined as the quotient
of P × F by this G-action:

P ×G F = (P × F )/G

More precisely, P ×G F can be constructed as the sheafification of the presheaf quotient
(P × F )/G in the appropriate topology (étale, fppf, etc.). This construction yields a
bundle π : P ×G F → X where the fiber over each point x ∈ X is isomorphic to F .

We can also go in the other direction - starting from a bundle with fiber F and construct-
ing a principal bundle.

Definition 8.1 (Frame Bundle). Let π : E → X be a bundle whose fibers are isomorphic
to a scheme F on which G acts. The frame bundle of E, denoted FrG(E), is the X-
scheme representing the functor that assigns to each X-scheme T the set of G-equivariant
isomorphisms:

FrG(E)(T ) = {ϕ : T × F
∼→ E ×X T (as T -schemes) | ϕ is G-equivariant}

Proposition 8.2. Let π : E → X be a bundle with fiber F .

1. The frame bundle FrG(E) is a principal G-bundle over X.

2. If E = P ×G F is an associated bundle for some principal G-bundle P , then
FrG(E) ∼= P .

3. For any bundle E with fiber F , we have E ∼= FrG(E) ×G F .

This establishes a correspondence between principal G-bundles and bundles with fiber F
(with G-action), showing that these two perspectives are equivalent.

Example 8.3. Let E → X be a vector bundle of rank n. Then the frame bundle
FrGLn(E) is the principal GLn-bundle whose fiber at x ∈ X consists of all bases of the
vector space Ex. Conversely, given a principal GLn-bundle P , the associated bundle
P ×GLn An is a vector bundle of rank n.
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